【題目】如圖,在四邊形中,,,,連接,點(diǎn)在上,且,,.
(1)求的長;
(2)求的面積.
【答案】(1);(2)42
【解析】
(1)易得△ABD是等腰直角三角形,則得到∠ADE=30°,然后得到AE,根據(jù)勾股定理求出AD,即可得到BE的長度;
(2)過點(diǎn)D作DF⊥BC,得到四邊形ABFD是正方形,則BF=DF=AD,利用勾股定理,求出CF的長度,即可求出的面積.
解:(1)∵,,
∴∠A=90°,
∵,
∴△ABD是等腰直角三角形,
∴∠ADB=45°,
∵,
∴∠ADE=30°,
∴,
根據(jù)勾股定理,得
,
∴,
∴;
(2)如圖,過點(diǎn)D作DF⊥BC,
∵,,
∴四邊形ABFD是正方形,
∴BF=DF=AD=6,
∵CD=10,∠DFC=90°,
∴,
∴,
∴的面積為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點(diǎn)E,點(diǎn)F在AC上,且BD=DF.
(1)求證:CF=EB;
(2)請(qǐng)你判斷AE、AF與BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這個(gè)分式為“和諧分式”.
(1)下列分式中,___________是和諧分式(填寫序號(hào)即可);
①; ② ;③ ;④
(2)若為整數(shù),且為和諧分式,請(qǐng)寫出的值;
(3)在化簡時(shí),
小冬和小奧分別進(jìn)行了如下三步變形:
小冬:原式
小奧:原式
顯然,小奧利用了其中的和諧分式, 第三步所得結(jié)果比小冬的結(jié)果簡單,原因是: ,請(qǐng)你接著小奧的方法完成化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,E是AB的中點(diǎn),直線平行于直線EC,且直線與直線EC之間的距離為2,點(diǎn)F在矩形ABCD邊上,將矩形ABCD沿直線EF折疊,使點(diǎn)A恰好落在直線上, 則DF的長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC,連接CE.設(shè)∠BAC=α,∠DCE=β.
(1)如圖①,點(diǎn)D在線段BC上移動(dòng)時(shí),角α與β之間的數(shù)量關(guān)系是____________,請(qǐng)說明理由;
(2)如圖②,點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),角α與β之間的數(shù)量關(guān)系是____________,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)D在線段BC的反向延長線上移動(dòng)時(shí),請(qǐng)?jiān)趫D③中畫出完整圖形并猜想角α與β之間的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在中,,點(diǎn)是線段延長線上一點(diǎn),且,點(diǎn)是線段上一點(diǎn),連接,以為斜邊作等腰,連接,滿是條件.
(1)若,,,求的長度;
(2)求證:;
(3)如圖2,點(diǎn)是線段延長線上一點(diǎn),其余條件與題干一致,探究、、之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線經(jīng)過兩點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為,將直線沿軸向下平移兩個(gè)單位得到直線,直線與拋物線的對(duì)稱軸交于點(diǎn),求直線的解析式;
(3)在(2)的條件下,求到直線距離相等的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,問卷給出了四種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整).
根據(jù)以上信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)如果全校有1200名學(xué)生,學(xué)習(xí)準(zhǔn)備的400個(gè)自行車停車位是否夠用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,AB=6,點(diǎn)D在BC上,BD=4,點(diǎn)E從點(diǎn)C出發(fā),以每秒1個(gè)單位長度的速度沿CA方向向點(diǎn)A運(yùn)動(dòng),△CDE關(guān)于DE的軸對(duì)稱圖形為△FDE.
(1)當(dāng)t為何值時(shí),點(diǎn)F在線段AC上.
(2)當(dāng)0<t<4時(shí),求∠AEF與∠BDF的數(shù)量關(guān)系;
(3)當(dāng)點(diǎn)B、E、F三點(diǎn)共線時(shí),求證:點(diǎn)F為線段BE的中點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com