【題目】如圖,AB是半圓O的直徑,點D是半圓O上一點,點C 的中點,CEAB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC

1)求證:GPGD;

2)求證:P是線段AQ的中點;

3)連接CD,若CD2,BC4,求O的半徑和CE的長.

【答案】(1)證明見解析;(2)證明見解析;(3)半徑為;CE=;

【解析】

(1)結(jié)合切線的性質(zhì)以及已知得出∠GPD=GDP,進(jìn)而得出答案;

(2)利用圓周角定理得出PA,PC,PQ的數(shù)量關(guān)系進(jìn)而得出答案;

(3)直接利用勾股定理結(jié)合三角形面積進(jìn)而得出答案.

(1)證明:連接OD,則OD⊥GD,∠OAD=∠ODA,

∵∠ODA+∠GDP=90°,∠EAP+∠GPD=∠EPA+∠EAP=90°,

∴∠GPD=∠GDP;

∴GP=GD;

(2)證明:∵AB為直徑,

∴∠ACB=90°,

∵CE⊥AB于E,

∴∠CEB=90°,

∴∠ACE+∠ECB=∠ABC+∠ECB=90°,

∴∠ACE=∠ABC=∠CAP,

∴PC=PA,

∵∠ACB=90°,

∴∠CQA+∠CAP=∠ACE+∠PCQ=90°,

∴∠PCQ=∠CQA,

∴PC=PQ,

∴PA=PQ,即P為Rt△ACQ斜邊AQ的中點;

(3)連接CD,

∵弧AC=弧CD,

∴CD=AC,

∵CD=2,

∴AC=2,

∵∠ACB=90°,

∴AB==,

故⊙O的半徑為,

∵CE×AB=AC×BC,

CE=2×4,

∴CE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:sin﹣x=﹣sinxcos﹣x=cosx,sinx+y=sinxcosy+cosxsiny

據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)

①cos﹣60°=﹣;

②sin75°=

③sin2x=2sinxcosx;

④sinx﹣y=sinxcosy﹣cosxsiny

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,點A是半圓上的三等分點,點B是劣弧AN的中點,點P是直徑MN上一動點.若MN=2AB=1,則△PAB周長的最小值是( 。

A. 2+1 B. +1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,若AC=4,BC=3,AB=5,則△ABC的內(nèi)切圓半徑R=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)概念:百度百科上這樣定義絕對值函數(shù):yx

并給出了函數(shù)的圖像(如圖).

方法遷移

借鑒研究正比例函數(shù)ykx與一次函數(shù)ykxbk,b是常數(shù),且k≠0)之間關(guān)系的經(jīng)驗,我們來研究函數(shù)yxaa是常數(shù))的圖像與性質(zhì).

‘1’開始

我們嘗試從特殊到一般,先研究當(dāng)a1時的函數(shù)yx1│

按照要求完成下列問題:

1)觀察該函數(shù)表達(dá)式,直接寫出y的取值范圍;

2)通過列表、描點、畫圖,在平面直角坐標(biāo)系中畫出該函數(shù)的圖像.

‘1’到一切

3)繼續(xù)研究當(dāng)a的值為-2,-,23,時函數(shù)yxa的圖像與性質(zhì),

嘗試總結(jié):

①函數(shù)yxaa≠0)的圖像怎樣由函數(shù)yx的圖像平移得到?

②寫出函數(shù)yxa的一條性質(zhì).

知識應(yīng)用

4)已知Ax1,y1),Bx2y2)是函數(shù)yxa的圖像上的任意兩點,且滿足x1x21時, y1y2,則a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷一種紀(jì)念品,11月份的營業(yè)額為2 000元.為擴大銷售,12月份該商店對這種紀(jì)念品打九折銷售,結(jié)果銷售量增加20件,營業(yè)額增加700元.

1)求這種紀(jì)念品11月份的銷售單價;

211月份該商店銷售這種商品_______件;

3)若11月份銷售這種紀(jì)念品獲利800元,求12月份銷售這種紀(jì)念品獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOC=100°,AOB=α,以OB為邊作等邊△BOD,連接CD.

(1)求證:ABO≌△CBD;

(2)當(dāng)α=150°時,試判斷△COD的形狀,并說明理由;

(3)探究:當(dāng)α為多少度時△COD是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線相交于點,過,交于點,交于點.,則線段的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1的兩個長方形可以按不同的形式拼成圖2和圖3兩個圖形.

1)在圖2中的陰影部分面積可表示為 ,在圖3中的陰影部分的面積可表示為 ,由這兩個陰影部分的面積得到的一個等式是(

A.

B.

C.

2)根據(jù)你得到的等式解決下面的問題:

①計算:

②解方程:

查看答案和解析>>

同步練習(xí)冊答案