【題目】如圖1的兩個長方形可以按不同的形式拼成圖2和圖3兩個圖形.

1)在圖2中的陰影部分面積可表示為 ,在圖3中的陰影部分的面積可表示為 ,由這兩個陰影部分的面積得到的一個等式是(

A.

B.

C.

2)根據(jù)你得到的等式解決下面的問題:

①計算:;

②解方程:

【答案】1,,B;(2)①;②.

【解析】

1)圖2的計算方法:等于兩個正方形的面積之差;圖3的計算方法:等于一個長方形的面積;由圖1可知,相等,由此即可得出答案;

2)①由題(1)的結論將所求式子化成兩個數(shù)之和與差的乘積即可;

②利用題(1)的結論將方程的左邊進行化簡,再系數(shù)化為1即可得出答案.

1)觀察圖2可得:

觀察圖3可得:

由圖1可得:

故答案為:,B

2)①由(1)可得:

;

整理得

系數(shù)化為1,得

故原方程的解為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點D是半圓O上一點,點C 的中點,CEAB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CECB于點P、Q,連接AC

1)求證:GPGD

2)求證:P是線段AQ的中點;

3)連接CD,若CD2,BC4,求O的半徑和CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,yx的增大而增大,且2≤x≤1時,y的最大值為9,則a的值為

A. 12 B.

C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,建筑物AB的高為6cm,在其正東方向有個通信塔CD,在它們之間的地面點M(B,M,D三點在一條直線上)處測得建筑物頂端A、塔項C的仰角分別為37°60°,在A處測得塔頂C的仰角為30°,則通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的直徑,、分別與圓相交于,那么下列等式中一定成立的是(

A. AEBF=AFCF B. AEAB=AOAD'

C. AEAB=AFAC D. AEAF=AOAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊中,,現(xiàn)有兩點、分別從點同時出發(fā),沿三角形的邊運動,已知點的速度為,點的速度為.當點第一次回到點時,點、同時停止運動,設運動時間為.

1)當為何值時,、兩點重合;

2)當點、分別在、邊上運動,的形狀會不斷發(fā)生變化.

①當為何值時,是等邊三角形;

②當為何值時,是直角三角形;

3)若點都在邊上運動,當存在以為底邊的等腰時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,、、.

1)請畫出關于軸對稱的(其中、、分別是、、的對應點)并直接寫出點的坐標為 .

2)若直線經(jīng)過點且與軸平行,則點關于直線的對稱點的坐標為 .

3)在軸上存在一點,使最大,則點的坐標為 .

4)第一象限有一點,在軸上找一點使最短,畫出最短路徑,保留作圖跡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將等腰直角三角形ABCABAC,∠BAC90°)和等腰直角三角形DEFDEDF,∠EDF90°)按圖1擺放,點DBC邊的中點上,點ADE上.

1)填空:ABEF的位置關系是   ;

2DEF繞點D按順時針方向轉(zhuǎn)動至圖2所示位置時,DF,DE分別交AB,AC于點PQ,求證:∠BPD+DQC180°

3)如圖2,在DEF繞點D按順時針方向轉(zhuǎn)動過程中,始終點P不到達A點,ABC的面積記為S1,四邊形APDQ的面積記為S2,那么S1S2之間是否存在不變的數(shù)量關系?若存在,請寫出它們之間的數(shù)量關系并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】本題滿分8分在一個不透明的袋中裝有3 個完全相同的小球,上面分別標號為1、2、3,從中隨機摸出兩個小球,并用球上的數(shù)字組成一個兩位數(shù).

1求組成的兩位數(shù)是奇數(shù)的概率;

2小明和小華做游戲,規(guī)則是:若組成的兩位數(shù)是4的倍數(shù),小明得3分,否則小華得3分,你認為該游戲公平嗎?說明理由;若不公平,請修改游戲規(guī)則,使游戲公平.

查看答案和解析>>

同步練習冊答案