【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,C的坐標(biāo)分別為(﹣4,5),(﹣1,3).

1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系,標(biāo)注原點(diǎn)以及x軸、y軸;

2)作出△ABC關(guān)于y軸對(duì)稱的△ABC′,并寫出點(diǎn)B′的坐標(biāo);

3)點(diǎn)Px軸上的動(dòng)點(diǎn),在圖中找出使△ABP周長最小時(shí)的點(diǎn)P,直接寫出點(diǎn)P的坐標(biāo)是:   

【答案】1)詳見解析;(2)圖詳見解析,B′的坐標(biāo)(2,1);(3)(﹣1,0).

【解析】

1)根據(jù)A,C兩點(diǎn)的坐標(biāo)確定坐標(biāo)系即可.

2)分別作出A,B,C的對(duì)應(yīng)點(diǎn)A′,B′,C′即可.

3)作點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)B″,連接AB″交x軸于p,點(diǎn)P即為所求.

解:(1)平面直角坐標(biāo)系如圖所示:

2)如圖△ABC′即為所求,由圖可知,B′(2,1).

3)如圖所示,點(diǎn)P(﹣1,0)即為所求點(diǎn).

故答案為:(﹣10).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC的外側(cè)作直線AP,點(diǎn)C關(guān)于直線AP的對(duì)稱點(diǎn)為點(diǎn)D,連接AD,BD,其中BD交直線AP于點(diǎn)E.

(1)依題意補(bǔ)全圖形;(2)若∠PAC=20°,求∠AEB的度數(shù);

(3)連結(jié)CE,寫出AE, BE, CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是銳角三角形內(nèi)一點(diǎn),,內(nèi)不同于的另一點(diǎn);、分別由、逆時(shí)針旋轉(zhuǎn)而得,旋轉(zhuǎn)角都為,則下列結(jié)論:

、、在一條直線上.

其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為1.第一次操作:分別延長ABBC,CA至點(diǎn)A1,B1,C1,使A1BAB,B1CBCC1ACA,順次連結(jié)A1,B1C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點(diǎn)A2B2,C2,使A2B1A1B1,B2C1B1C1C2A1C1A1,順次連結(jié)A2,B2,C2,得到△A2B2C2.…按此規(guī)律,要使得到的三角形的面積超過2013,最少經(jīng)過_____次操作.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線軸負(fù)半軸交于點(diǎn),與軸交于點(diǎn),點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)是拋物線上對(duì)稱軸上的一動(dòng)點(diǎn),且的面積為

(1)的值;

(2)的面積為,直接寫出點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,且ABC60°,DABC內(nèi)一點(diǎn) ,且DADB,EABC外一點(diǎn),BEAB,且EBDCBD,連DE,CE. 下列結(jié)論:①DACDBC;②BEAC ;③DEB30°. 其中正確的是(

A....B.①③...C. ...D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一座建于若干年前的水庫大壩的橫斷面如圖所示,其中背水面的整個(gè)坡面是長為米、寬為米的矩形.現(xiàn)需將其整修并進(jìn)行美化,方案如下:①將背水坡的坡度由改為②用一組與背水坡面長邊垂直的平行線將背水坡面分成塊相同的矩形區(qū)域,依次相間地種草與栽花.

(1)求整修后背水坡面的面積;

(2)如果栽花的成本是每平方米元,種草的成本是每平方米元,那么種植花草至少需要多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ACB中,ACB=90゜,CDAB于D.

(1)求證:ACD=B;

(2)若AF平分CAB分別交CD、BC于E、F,求證:CEF=CFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,點(diǎn)上一動(dòng)點(diǎn),把沿折疊,當(dāng)點(diǎn)的對(duì)應(yīng)點(diǎn)落在的角平分線上時(shí),則點(diǎn)的距離為( ).

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案