【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC=80°,∠ABC=70°.求∠BAD,∠AOF.

【答案】解:∵AD是高,∠ABC=70°,
∴∠BAD=90°﹣70°=20°,
∵AE、BF是角平分線,∠BAC=80°,∠ABC=70°,
∴∠ABO=35°,∠BAO=40°,
∴∠AOF=∠ABO+∠BAO=75°
【解析】在直角三角形中,根據(jù)兩銳角互余即可得到∠BAD=20°,根據(jù)角平分線的性質(zhì)可求出∠BAO和∠ABO,最后由三角形外角的性質(zhì)求得∠AOF=75°.
【考點精析】認真審題,首先需要了解三角形的“三線”(1、三角形角平分線的三條角平分線交于一點(交點在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(交點在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi)),還要掌握三角形的內(nèi)角和外角(三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】對于命題如果∠1+290°,那么∠1≠2能說明它是假命題的是( 。

A. 150°,∠240°B. 140°,∠250°

C. 130°,∠260°D. 1=∠245°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

(1)請寫出圖2中陰影部分的面積:;
(2)觀察圖2你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?代數(shù)式:(m+n)2 , (m﹣n)2 , mn.;
(3)根據(jù)(2)中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,求a﹣b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點,EC=4,△ABC的周長為23,則△ABD的周長為(

A.13
B.15
C.17
D.19

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近似數(shù)3.20的精確度說法正確的是(  )

A. 精確到百分位B. 精確到十分位C. 精確到千位D. 精確到萬位

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AOB=90°,射線OC繞點O從OA位置開始,以每秒4°的速度順時針方向旋轉(zhuǎn);同時,射線OD繞點O從OB位置開始,以每秒1°的速度逆時針方向旋轉(zhuǎn).當OC與OA成180°時,OC與OD同時停止旋轉(zhuǎn).

(1)當OC旋轉(zhuǎn)10秒時,∠COD=   °.

(2)當旋轉(zhuǎn)時間為   秒時,OC與OD的夾角是30°.

(3)當旋轉(zhuǎn)時間為   秒時,OB平分COD時.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AC=BC,分別以BC和AC為直角邊向上作等腰直角三角形△BCD和△ACE,AE與BD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.

(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

同步練習冊答案