【題目】如圖,矩形ABCD的頂點(diǎn)ABx軸的正半軸上,反比例函數(shù)y(k0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,交BC于點(diǎn)E.若AB4,CE2BE,tanAOD,則k的值_____

【答案】3

【解析】

tanAOD,可設(shè)AD3a、OA4a,在表示出點(diǎn)D、E的坐標(biāo),由反比例函數(shù)經(jīng)過點(diǎn)DE列出關(guān)于a的方程,解之求得a的值即可得出答案.

解:∵tanAOD,

∴設(shè)AD3aOA4a

BCAD3a,點(diǎn)D坐標(biāo)為(4a3a),

CE2BE,

BEBCa

AB4,

∴點(diǎn)E4+4a,a),

∵反比例函數(shù) 經(jīng)過點(diǎn)D、E,

k12a2=(4+4aa,

解得:a a0(舍),

D2,

k3

故答案為3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC中,ABAC.以C為圓心,CB的長(zhǎng)為半徑作弧,交AB于點(diǎn)D.分別以BD為圓心,大于BD的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E.作射線CEAB于點(diǎn)M.分別以AC為圓心,CM、AM的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)N.連接AN、CN

1)求證:ANCN

2)若AB5,tanB3,求四邊形AMCN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車和一輛快車沿相同路線從A地到B所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,下列說法正確的有()個(gè)

快車追上慢車需6小時(shí)

慢車比快車早出發(fā)2小時(shí)

快車速度為46km/h

慢車速度為46km/h

AB兩地相距828km

快車14小時(shí)到達(dá)B

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線的對(duì)稱軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問點(diǎn)MN運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接中國(guó)森博會(huì),某商家計(jì)劃從廠家采購(gòu)A,B兩種產(chǎn)品共20件,產(chǎn)品的采購(gòu)單價(jià)(元/件)是采購(gòu)數(shù)量(件)的一次函數(shù),下表提供了部分采購(gòu)數(shù)據(jù).

采購(gòu)數(shù)量(件)

1

2

A產(chǎn)品單價(jià)(元/件)

1480

1460

B產(chǎn)品單價(jià)(元/件)

1290

1280

1)設(shè)A產(chǎn)品的采購(gòu)數(shù)量為x(件),采購(gòu)單價(jià)為y1(元/件),求y1x的關(guān)系式;

2)經(jīng)商家與廠家協(xié)商,采購(gòu)A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購(gòu)單價(jià)不低于1200元,求該商家共有幾種進(jìn)貨方案;

3)該商家分別以1760/件和1700/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完,在(2)的條件下,求采購(gòu)A種產(chǎn)品多少件時(shí)總利潤(rùn)最大,并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線yx+1x軸、y軸的交點(diǎn)分別為AB,以x=﹣1為對(duì)稱軸的拋物線y=﹣x2+bx+cx軸分別交于點(diǎn)A、C

1)求拋物線的解析式;

2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),設(shè)拋物線的對(duì)稱軸lx軸交于一點(diǎn)D,連接PD,交ABE,求出當(dāng)以A、DE為頂點(diǎn)的三角形與△AOB相似時(shí)點(diǎn)P的坐標(biāo);

3)若點(diǎn)Q在第二象限內(nèi),且tanAQD2,線段CQ是否存在最小值?如果存在直接寫出最小值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)yy1+y2,其中y1x成反比例,y2x2成正比例,函數(shù)的自變量x的取值范圍是x,且當(dāng)x1x4時(shí),y的值均為

請(qǐng)對(duì)該函數(shù)及其圖象進(jìn)行如下探究:

(1)解析式探究:根據(jù)給定的條件,可以確定出該函數(shù)的解析式為:   

(2)函數(shù)圖象探究:

根據(jù)解析式,補(bǔ)全下表:

x

1

2

3

4

6

8

y

根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出函數(shù)圖象.

(3)結(jié)合畫出的函數(shù)圖象,解決問題:

當(dāng)x,8時(shí),函數(shù)值分別為y1y2,y3,則y1,y2y3的大小關(guān)系為:  ;(用“<”或“=”表示)

若直線yk與該函數(shù)圖象有兩個(gè)交點(diǎn),則k的取值范圍是   ,此時(shí),x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、E是以AD為直接的半圓O的三等分點(diǎn),弧BE的長(zhǎng)為,作BC⊥AE,交AE的延長(zhǎng)線于點(diǎn)C,則圖中陰影部分的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是ABC的邊AB上一點(diǎn),O與邊AC相切于點(diǎn)E,與邊BC,AB分別相交于點(diǎn)D,F(xiàn),且DE=EF.

(1)求證:∠C=90°;

(2)當(dāng)BC=3,sinA=時(shí),求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案