【題目】如圖,已知畫射線,射線,試寫出和的數(shù)量關(guān)系,并說明理由.
【答案】或,見解析.
【解析】
分OC、OD在邊OA的同側(cè)和異側(cè)分別作出圖形,然后分別進(jìn)行計算即可得解.
∠AOB=∠COD或∠AOB+∠COD=180°,理由如下:
如圖1,∵OC⊥OA,OD⊥OB,
∴∠AOB+∠BOC=90°,∠COD+∠BOC=90°,
∴∠AOB=∠COD;
如圖2,∵OC⊥OA,OD⊥OB,
∴∠AOC=∠BOD=90°,
∴∠AOB+∠BOC=∠AOB+∠AOD=90°,
∴∠AOB+∠BOC+∠AOB+∠AOD=180°,
又∵∠BOC+∠AOB+∠AOC=∠COD,
∴∠AOB+∠COD=180°;
如圖3,∠AOB+∠COD =360°-∠AOC-∠BOD=360°-90°-90°=180°;
如圖4,∵OC⊥OA,OD⊥OB,
∴∠AOB+∠AOD=90°,∠COD+∠AOD=90°,
∴∠AOB=∠COD;
綜上所述,∠AOB=∠COD或∠AOB+∠COD=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點P從點A出發(fā),沿著正方形的邊順時針方向運動一周,則△APC的面積y與點P運動的路程x之間形成的函數(shù)關(guān)系圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動之一,某校七年級(1)班班長對全班50名學(xué)生在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計,并繪制成了統(tǒng)計圖.
請根據(jù)以上信息回答:
(1)該班同學(xué)所搶紅包金額的眾數(shù)是 , 中位數(shù)是;
(2)該班同學(xué)所搶紅包的平均金額是多少元?
(3)若該校共有18個班級,平均每班50人,請你估計該校學(xué)生春節(jié)期間所搶的紅包總金額為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的邊OA在x軸上,AC與OB交于點D (8,4),反比例函數(shù)y= 的圖象經(jīng)過點D.若將菱形OABC向左平移n個單位,使點C落在該反比例函數(shù)圖象上,則n的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 中,∠CAB=70°,在同一平面內(nèi), 將 繞點A旋轉(zhuǎn)到 的位置,使得CC′∥AB,則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BC∥GE,AF∥DE,點D在直線BC上,點F在直線GE上,且∠1=50°.
(1)求∠AFG的度數(shù);
(2)若AQ平分∠FAC,交直線BC于點Q,且∠Q=18°,則∠ACB的度數(shù)為______°.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B、C是不在同一條直線上的三點,請按下列要求畫圖并作答(畫圖時工具不限,不需寫出結(jié)論,只需畫出圖形、標(biāo)注字母):
(1)畫直線BC,連接AC;
(2)畫線段BC的中點D,連接AD;
(3)畫出∠ADC的平分線交AC于點E;
(4)若∠BDA=求∠ADC,∠EDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,(1)∵∠A=_____(已知),
∴AC∥ED( )
(2)∵∠2=_____(已知),
∴AC∥ED( )
(3)∵∠A+_____=180°(已知),
∴AB∥FD( )
(4)∵AB∥_____(已知),
∴∠2+∠AED=180°( )
(5)∵AC∥_____(已知),
∴∠C=∠1( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣x+6與x,y軸分別交于A,B兩點,點C(0,n)是線段BO上一點,將△AOB沿直線AC折疊,點B剛好落在x軸負(fù)半軸上,則點C的坐標(biāo)是( 。
A. (0,3) B. (0,) C. (0,) D. (0,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com