【題目】如圖,在平行四邊形ABCD中,E、F分別是DA、BC延長線上的點,且∠ABE=∠CDF.
求證:(1)△ABE≌△CDF;
(2)四邊形EBFD是平行四邊形.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據條件,由ASA即可得出△ABE≌△CDF;
(2)由全等三角形的性質得出AE=CF,由平行四邊形的性質得出AD∥BC,AD=BC,證出DE=BF,即可得出四邊形EBFD是平行四邊形.
證明:(1)∵四邊形ABD是平行四邊形,
∴AB=CD,∠BAD=∠DCB,
∴∠BAE=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA);
(2)∵△ABE≌△CDF,
∴AE=CF(全等三角形對應邊相等),
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∴AD+AE=BC+CF,
即DE=BF,
∴四邊形EBFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形).
科目:初中數學 來源: 題型:
【題目】如圖1,在邊長為1的正方形ABCD中,動點E,F分別在邊AB,CD上,將正方形ABCD沿直線EF折疊,使點B的對應點M始終落在邊AD上(點M不與點A,D重合),點C落在點N處,MN與CD交于點P,設BE=x.
(1)當AM=時,求x的值;
(2)如圖2,連接BM、過B點作BH⊥MN,垂足為H,求證:BM是∠ABH的角平分線;
(3)隨著點M在邊AD上位置的變化,△PDM的周長是否發(fā)生變化?如變化,請說明理由;如不變,請求出該定值;
(4)設四邊形BEFC的面積為S,求S與x之間的函數表達式,并求出S的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張陽把他和四位同學的年齡作為一組數據,計算出平均數是15,方差是0.4,則10年后張陽等5位同學的年齡的平均數和方差分別是( )
A.25和10.4B.15和4C.25和0.4D.15和0.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點(與點A,B不重合),過點C作直線PQ,使得∠ACQ=∠ABC.
(1)求證:直線PQ是⊙O的切線.
(2)過點A作AD⊥PQ于點D,交⊙O于點E,若⊙O的半徑為2,sin∠DAC=,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點B、D在反比例函數y═(k>0)的圖象上,對角線AC與BD相交于坐標原點O,若點A(﹣1,2),菱形的邊長為5,則k的值是( 。
A.4B.8C.12D.16
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一個二次函數的圖象經過點A(0,1),它的頂點為B(1,3).
(1)求這個二次函數的表達式;
(2)過點A作AC⊥AB交拋物線于點C,點P是直線AC上方拋物線上的一點,當△APC面積最大時,求點P的坐標和△APC的面積最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,小球從左側的斜坡滾下,到達底端后又沿著右側斜坡向上滾,在這個過程中,小球的運動速度v(單位:m/s)與運動時間t (單位:s)的函數圖象如圖2,則該小球的運動路程y(單位:m)與運動時間t(單位:s)之間的函數圖象大致是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“六一”兒童節(jié)前,玩具商店根據市場調查,用2500元購進一批兒童玩具,上市后很快脫銷,接著又用4500元購進第二批這種玩具,所購數量是第一批數量的1.5倍,但每套進價多了10元.第一、二批玩具每套的進價分別是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩商場以同樣的價格出售同樣的商品,并且又各自推出不同的優(yōu)惠方案:在甲商場累計購物超過100元后,超出100元的部分按八折收費;在乙商場累計購物超過50元后,超出50元的部分按九折收費.設顧客累計購物(單位:元),購物花費為(單位:元).
(1)分別寫出在甲、乙兩個商場購物時,關于的函數解析式;
(2)顧客到哪家商場購物花費少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com