【題目】如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

①AC=AD;②BD⊥AC;③四邊形ACED是菱形.

其中正確的個數(shù)是(

A.0 B.1 C.2 D.3

【答案】D

【解析】

試題分析:∵將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,∴∠ACE=120°,∠DCE=∠BCA=60°,AC=CD=DE=CE,∴∠ACD=120°﹣60°=60°,∴△ACD是等邊三角形,∴AC=AD,AC=AD=DE=CE,∴四邊形ACED是菱形,∵將等邊△ABC繞點C順時針旋轉(zhuǎn)120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,∴BD⊥AC,∴①②③都正確,故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列六種說法正確的個數(shù)是( )
①無限小數(shù)都是無理數(shù);
②正數(shù)、負數(shù)統(tǒng)稱實數(shù);
③無理數(shù)的相反數(shù)還是無理數(shù);
④無理數(shù)與無理數(shù)的和一定還是無理數(shù);
⑤無理數(shù)與有理數(shù)的和一定是無理數(shù);
⑥無理數(shù)與有理數(shù)的積一定仍是無理數(shù).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關于點C成中心對稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關系和大小關系?說明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當∠ACB為多少度時,四邊形ABDE為矩形?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,則∠1+∠2+∠3+∠4+∠5=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】作圖題:如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△AOB的三個頂點A,O,B都在格點上.

(1)畫出△AOB關于點O成中心對稱的三角形;
(2)畫出△AOB繞點O逆時針旋轉(zhuǎn)90后得到的三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果∠α=55.5°,∠β=55°5',那么∠α與∠β之同的大小關系是(

A. ∠α>∠β B. ∠α<∠β C. ∠α=∠β D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的方程(a+3)x|a|1﹣3x+2=0是一元二次方程,則a的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC由△A′B′C′繞O點旋轉(zhuǎn)180°而得到,則下列結(jié)論不成立的是( )

A.點A與點A′是對應點
B.BO=B′O
C.∠ACB=∠C′A′B′
D.AB∥A′B′

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A(﹣1,0),C(1,4),點B在x軸上,且AB=4.

(1)求點B的坐標;
(2)求△ABC的面積;
(3)在y軸上是否存在點P,使以A、B、P三點為頂點的三角形的面積為7?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案