【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關(guān)于點(diǎn)C成中心對(duì)稱(chēng),連接AE、BD.
(1)線(xiàn)段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說(shuō)明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABDE為矩形?說(shuō)明你的理由.
【答案】解:(1)∵△ABC與△DEC關(guān)于點(diǎn)C成中心對(duì)稱(chēng),
∴AC=CD,BC=CE,
∴四邊形ABDE是平行四邊形,
∴AE與BD平行且相等;
(2)∵四邊形ABDE是平行四邊形,
∴S△ABC=S△BCD=S△CDE=S△ACE ,
∵△ABC的面積為5cm2 ,
∴四邊形ABDE的面積=4×5=20cm2;
(3)∠ACB=60°時(shí),四邊形ABDE為矩形.
理由如下:∵AB=AC,∠ACB=60°,
∴△ABC是等邊三角形,
∴AC=BC,
∵四邊形ABDE是平行四邊形,
∴AD=2AC,BE=2BC,
∴AD=BE,
∴四邊形ABDE為矩形.
【解析】(1)根據(jù)中心對(duì)稱(chēng)的性質(zhì)可得AC=CD,BC=CE,然后根據(jù)對(duì)角線(xiàn)互相平分的四邊形是平行四邊形得到四邊形ABDE是平行四邊形,再根據(jù)平行四邊形的對(duì)邊互相平行且相等解答;
(2)根據(jù)平行四邊形的性質(zhì),對(duì)角線(xiàn)把四邊形分成面積相等的四個(gè)部分解答;
(3)∠ACB=60°.先判斷出△ABC是等邊三角形,根據(jù)等邊三角形的三條邊都相等可得AC=BC,然后求出AD=BE,再根據(jù)對(duì)角線(xiàn)相等的平行四邊形是矩形證明.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用中心對(duì)稱(chēng)及中心對(duì)稱(chēng)圖形的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說(shuō),這兩個(gè)圖形成中心對(duì)稱(chēng);如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說(shuō),這個(gè)圖形成中心對(duì)稱(chēng)圖形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別是AB,CD的中點(diǎn),G,H分別是AF,CE的中點(diǎn),連結(jié)EG,F(xiàn)H.
(1)四邊形EHFG是不是平行四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(2)求四邊形EHFG的面積與平行四邊形ABCD的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明. 已知:如圖,BE∥CD,∠A=∠1,
求證:∠C=∠E.
證明:∵BE∥CD (已知 )
∴∠2=∠C ()
又∵∠A=∠1 (已知 )
∴AC∥DE ()
∴∠2=∠E ()
∴∠C=∠E (等量代換 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線(xiàn)的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為(﹣4,4),(﹣1,2).
(1)①請(qǐng)?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
②將△ABC向右平移2個(gè)單位長(zhǎng)度,然后再向下平移3個(gè)單位長(zhǎng)度,得到△A′B′C′,畫(huà)出平移后的△A′B′C′.
(2)寫(xiě)出點(diǎn)△A′B′C′各個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延長(zhǎng)CA至點(diǎn)E,使AE=AC;延長(zhǎng)CB至點(diǎn)F,使BF=BC.連接AD,AF,DF,EF.延長(zhǎng)DB交EF于點(diǎn)N.
(1)求證:AD=AF;
(2)求證:BD=EF;
(3)試判斷四邊形ABNE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)菱形的兩條對(duì)角線(xiàn)的長(zhǎng)分別為5和8,那么這個(gè)菱形的面積是( 。
A. 40 B. 20 C. 10 D. 25
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,
(1)如圖1,若△ABC為等邊三角形,D為線(xiàn)段BC中點(diǎn),線(xiàn)段AD關(guān)于直線(xiàn)AB的對(duì)稱(chēng)線(xiàn)段為線(xiàn)段AE,連接DE,則∠BDE的度數(shù)為___________;
(2)若△ABC為等邊三角形,點(diǎn)D為線(xiàn)段BC上一動(dòng)點(diǎn)(不與B,C重合),連接AD并將線(xiàn)段AD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段DE,連接BE.
①根據(jù)題意在圖2中補(bǔ)全圖形;
②小玉通過(guò)觀察、驗(yàn)證,提出猜測(cè):在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,恒有CD=BE.經(jīng)過(guò)與同學(xué)們的充分討論,形成了幾種證明的思路:
思路1:要證明CD=BE,只需要連接AE,并證明△ADC≌△AEB;
思路2:要證明CD=BE,只需要過(guò)點(diǎn)D作DF∥AB,交AC于F,證明△ADF≌△DEB;
思路3:要證明CD=BE,只需要延長(zhǎng)CB至點(diǎn)G,使得BG=CD,證明△ADC≌△DEG;
……
請(qǐng)參考以上思路,幫助小玉證明CD=BE.(只需要用一種方法證明即可)
(3)小玉的發(fā)現(xiàn)啟發(fā)了小明:如圖3,若AB=AC=kBC,AD=kDE,且∠ADE=∠C,此時(shí)小明發(fā)現(xiàn)BE,BD,AC三者之間滿(mǎn)足一定的的數(shù)量關(guān)系,這個(gè)數(shù)量關(guān)系是______________________.(直接給出結(jié)論無(wú)須證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等邊△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:
①AC=AD;②BD⊥AC;③四邊形ACED是菱形.
其中正確的個(gè)數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法將二次三項(xiàng)式a2+4a﹣5變形,結(jié)果是( 。
A.(a﹣2)2+9B.(a+2)2+9C.(a﹣2)2﹣9D.(a+2)2﹣9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com