4.已知:A=2x2-3x+2,B=x2-3x-2.
(1)求A-B;
(2)當(dāng)x=-2時(shí),求A-B的值.

分析 (1)根據(jù)整式的加減,多項(xiàng)式減多項(xiàng)式要加括號(hào),再根據(jù)去括號(hào)、合并同類項(xiàng),可化簡(jiǎn)整式;
(2)根據(jù)代數(shù)式求值,可得答案.

解答 解:(1)A-B=(2x2-3x+2)-(x2-3x-2)
=2x2-3x+2-x2+3x+2
=x2+4;
(2)當(dāng)x=-2時(shí),原式=(-2)2+4=8.

點(diǎn)評(píng) 本題考查了整式的加減,去括號(hào)是解題關(guān)鍵,括號(hào)前是負(fù)數(shù)去括號(hào)都變號(hào),括號(hào)前是正數(shù)去括號(hào)不變號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若三角形三個(gè)內(nèi)角度數(shù)的比為2:3:4,則三個(gè)內(nèi)角分別為40°,60°,80°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.計(jì)算題:
(1)(-8)+(+11)-(-9)+(-2);
(2)($\frac{1}{2}$-$\frac{2}{3}$+$\frac{4}{5}$-$\frac{1}{6}$)×(-60)
(3)-22-(-1)3÷|-$\frac{1}{6}$|
(4)$\root{3}{-64}$+$\sqrt{16}$×$\sqrt{\frac{9}{4}}$÷(-$\sqrt{2}$)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.計(jì)算:$\frac{36}{5}$÷$\frac{9}{2}$=$\frac{8}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在?ABCD中,點(diǎn)E在BC邊上,AE=AB,點(diǎn)F在DE上,∠DAF=∠CDE.
(1)△AEF∽△DEA,并證明:
(2)如果AB=6,DF=5,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,拋物線y=ax2-2ax+c(a≠0)與y軸相交于點(diǎn)C(0,4),與x軸相交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)為(4,0).
(1)求此拋物線的解析式;
(2)拋物線在x軸上方的部分有一動(dòng)點(diǎn)Q,當(dāng)△QAB的面積等于12時(shí),求點(diǎn)Q的坐標(biāo);
(3)若平行于x軸的動(dòng)直線l 與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問(wèn):是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在△ABC中,∠BAC=60°,AD是∠BAC的平分線,AC=$\sqrt{6}$,若點(diǎn)P是AD上一動(dòng)點(diǎn),且作PN⊥AC于點(diǎn)N,則PN+PC的最小值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

13.觀察下面一列數(shù),探究其中的規(guī)律:-1,$\frac{1}{2}$,$-\frac{1}{3}$,$\frac{1}{4}$,$-\frac{1}{5}$,$\frac{1}{6}$
第2014個(gè)數(shù)是$\frac{1}{2014}$;如果這列數(shù)無(wú)限排列下去,與哪個(gè)數(shù)越來(lái)越近?
答:0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知關(guān)于x的方程ax+3=1-2x的解恰為方程3x-1=5的解,則a=-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案