【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°D為AB邊上一點(diǎn).
求證:(1)△ACE△BCD;
(2)
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】試題分析:(1)本題要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,則DC=EA,AC=BC,∠ACB=∠ECD,又因?yàn)閮山怯幸粋(gè)公共的角∠ACD,所以∠BCD=∠ACE,根據(jù)SAS得出△ACE≌△BCD;
(2)由(1)的論證結(jié)果得出∠DAE=90°,AE=DB,從而求出AD2+DB2=DE2.
試題解析:(1)∵∠ACB=∠ECD=90°,
∴∠ACD+∠BCD=∠ACD+∠ACE,
即∠BCD=∠ACE,
∵BC=AC,DC=EC,
∴△ACE≌△BCD;
(2)∵△ACB是等腰直角三角形,
∴∠B=∠BAC=45°,
∵△ACE≌△BCD,
∴∠B=∠CAE=45°
∴∠DAE=∠CAE+∠BAC=45°+45°=90°,
∴AD2+AE2=DE2,
由(1)知AE=DB,
∴AD2+DB2=DE2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)活動(dòng)課中,同學(xué)們準(zhǔn)備了一些等腰直角三角形紙片,從每張紙片中剪出一個(gè)扇形制作圓錐玩具模型.如圖,已知△ABC是腰長(zhǎng)為4的等腰直角三角形.
(1)在等腰直角三角形ABC紙片中,以C為圓心,剪出一個(gè)面積最大的扇形(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)請(qǐng)求出所制作圓錐底面的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△AOB中點(diǎn)O是原點(diǎn),點(diǎn)A在y軸上,點(diǎn)B的坐標(biāo)是(2 ,2),小明做一個(gè)數(shù)學(xué)實(shí)驗(yàn),在x軸上取一動(dòng)點(diǎn)C,以AC為一邊畫(huà)出等邊△ACP,移動(dòng)點(diǎn)C時(shí),探究點(diǎn)P的位置變化情況.
(1)如圖,小明將點(diǎn)C移至x軸負(fù)半軸,在AC的右側(cè)畫(huà)出等邊△ACP,并使得頂點(diǎn)P在第三象限時(shí),連接BP,求證:△AOC≌△ABP;
(2)小明在x軸上移動(dòng)點(diǎn)C,并在AC的右側(cè)畫(huà)出等邊△ACP時(shí),發(fā)現(xiàn)點(diǎn)P在某函數(shù)圖象上,請(qǐng)求出點(diǎn)P所在函數(shù)圖象的解析式.
(3)小明在x軸上移動(dòng)點(diǎn)C點(diǎn)時(shí),若在AC的左側(cè)畫(huà)出等邊△ACP,點(diǎn)P會(huì)不會(huì)在某函數(shù)圖象上?若會(huì)在某函數(shù)圖象上,請(qǐng)直接寫(xiě)出該函數(shù)圖象的解析式,若不在某函數(shù)圖象上,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖,直線EF與AB、CD分別相交于點(diǎn)E、F.
(1)如圖1,若∠1=120°,∠2=60°,求證AB∥CD;
(2)在(1)的情況下,若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系;
①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=∠PEB+∠PFD;
請(qǐng)閱讀下面的解答過(guò)程,并填空(理由或數(shù)學(xué)式)
解:如圖2,過(guò)點(diǎn)P作MN∥AB,
則∠EPM=∠PEB_____.
∵AB∥CD(已知),MN∥AB(作圖)
∴MN∥CD_____.
∴∠MPF=∠PFD
∴∠_____+∠_____=∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD
②當(dāng)點(diǎn)P在圖3的位置時(shí),∠EPF、∠PEB、∠PFD三個(gè)角之間有何關(guān)系并證明.
③當(dāng)點(diǎn)P在圖4的位置時(shí),請(qǐng)直接寫(xiě)出∠EPF、∠PEB、∠PFD三個(gè)角之間的關(guān)系:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是2017年杭州市某月24日08時(shí)至25日07時(shí)的空氣質(zhì)量指數(shù)統(tǒng)計(jì)圖(空氣質(zhì)量指數(shù)AQI的值在不同的區(qū)間,就代表了不同的空氣質(zhì)量水平.比如0~50之間,代表“良好”,對(duì)應(yīng)的顏色為綠色;51~100之間,代表“中等”,對(duì)應(yīng)的顏色為黃色;101~150之間,代表“對(duì)敏感人群不健康”,對(duì)應(yīng)的顏色為橙色,等等),則根據(jù)統(tǒng)計(jì)圖得出的下列判斷,正確的是( )
A. 在這個(gè)24小時(shí)中,AQI的值超過(guò)良好限值時(shí)段是24日08時(shí)至24日12時(shí)
B. 在這個(gè)24小時(shí)中,AQI對(duì)應(yīng)的顏色為黃色的時(shí)段持續(xù)了20小時(shí)以上
C. 在這個(gè)24小時(shí)中,AQI的最大值和最小值的差為77
D. 建議中老年朋友在25日06時(shí)至07時(shí)進(jìn)行晨練
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖所示的一塊地,已知AD=12米,CD=9米,∠ADC=90,AB=39米,BC=36米,求這塊地的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)兩會(huì)于3月5日至20日在北京召開(kāi),為了了解市民“獲取兩會(huì)新聞的最主要途徑”,記者小李開(kāi)展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問(wèn)題:
(1)這次接受調(diào)查的市民總?cè)藬?shù)是 ;
(2)扇形統(tǒng)計(jì)圖中,“電視”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有700萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦上網(wǎng)和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式;
(2)若點(diǎn)D為該拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AC上方,當(dāng)以A,C,D為頂點(diǎn)的三角形面積最大時(shí),求點(diǎn)D的坐標(biāo)及此時(shí)三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有如下結(jié)論:
①a>0;②b>0;③a+b+c>0;④2a+b=0;⑤方程ax2+bx+c=0的解為x1=﹣1,x2=3.
其中正確的是( )
A.①②③
B.②③④
C.③④⑤
D.①④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com