【題目】如圖,為的直徑,,為的切線,直線交延長(zhǎng)線于,.
(1)求證:是的切線;
(2)若,,求陰影部分的周長(zhǎng).
【答案】(1)證明見解析;(2)陰影部分的周長(zhǎng)是
【解析】
(1)過點(diǎn)O作OH⊥CD,垂足為H,連接OD,先證明BOC≌AOE(ASA),可得OC=OE,進(jìn)而可證得OH=OB,再結(jié)合OH⊥CD即可得證;
(2)先根據(jù)求得,再證得∠AOH=∠DOA+∠DOH=120°,進(jìn)而利用解直角三角形求得,利用弧長(zhǎng)公式計(jì)算弧長(zhǎng)即可求得答案.
(1)證明:如圖,過點(diǎn)O作OH⊥CD,垂足為H,連接OD,
∵BC,AD為⊙O的切線,
∴∠CBO=∠OAE=90°,
又OB=OA,∠BOC=∠EOA,
∴BOC≌AOE(ASA),
∴OC=OE,
又DC=DE,
∴DO平分∠ADE,OD⊥CE,
∴OH=OA,
∴OH=OB,
又∵OH⊥CD,
∴CD是⊙O的切線;
(2)解:∵在RtAEO中,∠E=60°,
∴
∵AE=1,
∴,
∵OD⊥CE,
∴∠DOA=90°-∠EOA=∠E=60°,
∠DOH=90°-∠COH=90°-∠COB=90°-∠AOE=∠E=60°,
,
∴弧AH的長(zhǎng)是,
∴陰影部分的周長(zhǎng)是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=6,將Rt△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使斜邊A′B′過B點(diǎn),則線段CA掃過的面積為_____.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面系中,一次函數(shù)的圖像經(jīng)過定點(diǎn)A,反比例函數(shù)的圖像經(jīng)過點(diǎn)A,且與一次函數(shù)的圖像相交于點(diǎn)B(,m).
(1)求m、a的值;
(2)設(shè)橫坐標(biāo)為n的點(diǎn)P在反比例函數(shù)圖象的第三象限上,且在點(diǎn)B右側(cè),連接AP、BP,△ABP的面積為12,求代數(shù)式的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,二次函數(shù)y=x2+bx+c的圖像經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)m≤x≤m1時(shí),二次函數(shù)yx2bxc的最大值為2m,求m的值;
(3)如圖2,點(diǎn)D為直線AC上方二次函數(shù)圖像上一動(dòng)點(diǎn),連接BC、CD,設(shè)直線BD交線段AC于點(diǎn)E,△CDE的面積為S1,△BCE的面積為S2,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)坐標(biāo)為的拋物線經(jīng)過點(diǎn),與軸的交點(diǎn)在,之間(含端點(diǎn)),則下列結(jié)論:①;②;③對(duì)于任意實(shí)數(shù),總成立;④關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC=2,∠A=30°,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)120°,若P為AB上一動(dòng)點(diǎn),旋轉(zhuǎn)后點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P',則線段PP'長(zhǎng)度的最小值是( )
A.B.2C.3D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(概念認(rèn)識(shí))
若以圓的直徑的兩個(gè)端點(diǎn)和圓外一點(diǎn)為頂點(diǎn)的三角形是等腰三角形,則圓外這一點(diǎn)稱為這個(gè)圓的徑等點(diǎn).
(數(shù)學(xué)理解)
(1)如圖①,AB是⊙O的直徑,點(diǎn)P為⊙O外一點(diǎn),連接AP交⊙O于點(diǎn)C,PC=AC.
求證:點(diǎn)P為⊙O的徑等點(diǎn).
(2)已知AB是⊙O的直徑,點(diǎn)P為⊙O的徑等點(diǎn),連接AP交⊙O于點(diǎn)C,若PC=2AC.求的值.
(問題解決)
(3)如圖②,已知AB是⊙O的直徑.若點(diǎn)P為⊙O的徑等點(diǎn),連接AP交⊙O于點(diǎn)C,PC=3AC.利用直尺和圓規(guī)作出所有滿足條件的點(diǎn)P.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了檢測(cè)疫情期間的學(xué)習(xí)效果,某班依據(jù)學(xué)校要求進(jìn)行了測(cè)試,并將成績(jī)分成五個(gè)等級(jí),依據(jù)相關(guān)數(shù)據(jù)繪制如下不完整統(tǒng)計(jì)圖表如下,請(qǐng)解答問題:
(1)該班參與測(cè)試的人數(shù)為________;
(2)等級(jí)的人數(shù)之比為,依據(jù)數(shù)據(jù)補(bǔ)全統(tǒng)計(jì)圖;
(3)扇形圖中,等級(jí)人數(shù)所對(duì)應(yīng)的扇形圖中的圓心角為________;
(4)若全年級(jí)共有1400人,請(qǐng)估計(jì)年級(jí)部測(cè)試等級(jí)在等級(jí)以上(包括級(jí))的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是邊CD上的點(diǎn),且CE=4,過點(diǎn)E作CD的垂線,并在垂線上截取EF=3,連接CF.將△CEF繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為a.
(1)問題發(fā)現(xiàn)
當(dāng)a=0°時(shí),AF= ,BE= ,= ;
(2)拓展探究
試判斷:當(dāng)0°≤a°<360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情況給出證明.
(3)問題解決
當(dāng)△CEF旋轉(zhuǎn)至A,E,F三點(diǎn)共線時(shí),直接寫出線段BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com