【題目】如圖,已知是正方形內(nèi)一點,以點為旋轉(zhuǎn)中心,將按順時針方向旋轉(zhuǎn)使點與點重合,這時點旋轉(zhuǎn)到點.

的長為的長為,在圖中用陰影標出旋轉(zhuǎn)到的過程中,邊所掃過區(qū)域的面積,并用含、的式子表示它________;

,,,連接,試猜想的形狀,并說明理由.

【答案】(1);(2)是等腰直角三角形,理由見解析.

【解析】

(1)因為將△ABP按順時針方向旋轉(zhuǎn)使點A與點C重合,即旋轉(zhuǎn)了90°,利用面積差可得邊PA所掃過區(qū)域的面積=S=S扇形BAC+SCBG-SABP-S扇形BPG,代入可得結(jié)論;

(2)先利用勾股定理得PG=,根據(jù)勾股定理的逆定理可得:△PGC是等腰直角三角形.

(1)如圖1,

由旋轉(zhuǎn)得:∠PBG=∠ABC=90°,BG=PB=b,

△ABP≌△CBG,

∴S=S扇形BAC+SCBG-SABP-S扇形BPG,

=,

=,

故答案為:;

如圖是等腰直角三角形,

理由是:∵,

是等腰直角三角形,

,

中,,,

是直角三角形,

是等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,點D為一等腰直角三角形紙片的斜邊AB的中點,EBC邊上的一點,將這張紙片沿DE翻折成如圖②,使BEAC邊相交于點F,若圖①中AB,則圖②中CEF的周長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1)所示,A,E,FC在一條直線上,AECF,過EF分別作DE⊥AC,BF⊥AC,若ABCD,求證EG=FG.(提示:先證△ABF≌△CDE,得BF=DE,再證△BFG≌△DEG);若將△DEC的邊EC沿AC方向移動,變?yōu)閳D(2)時,其余條件不變,上述結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,點的中點,的平分線奇交于點,將沿折疊,點恰好落在點處,延長交于點,有下列四個結(jié)論:

;;

其中,將正確的結(jié)論有幾個:(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊△ABC中,EBC邊上一點,GBC延長線上一點,過點E作∠AEM60°,交∠ACG的平分線于點M

1)如圖1,當點EBC邊的中點位置時,求證:AEEM

2)如圖2,當點EBC邊的任意位置時,(1)中的結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解本校九年級男生“引體向上”項目的訓練情況,隨機抽取該年級部分男生進行了一次測試(滿分15分,成績均記為整數(shù)分),并按測試成績(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)汁圖,請根據(jù)圖中信息解答下列問題:

(l)本次抽取樣本容量為____,扇形統(tǒng)計圖中A類所對的圓心角是____度;

(2)請補全統(tǒng)計圖;

(3)若該校九年級男生有300名,請估計該校九年級男生“引體向上”項目成績?yōu)镃類的有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=BC=2,ABC=120°,將△ABC繞著點B順時針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1BAC于點E,A1C1分別交AC、BCD、F兩點.

(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BEBF有怎樣的數(shù)量關系?并證明你的結(jié)論.

(2)如圖2,當a=30°時,試判斷四邊形BC1DA的形狀,并證明.

(3)在(2)的條件下,求線段DE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)y=(k>0)的圖象經(jīng)過點A(1,2)、B兩點,過點Ax軸的垂線,垂足為C,連接AB、BC.若三角形ABC的面積為3,則點B的坐標為___________

查看答案和解析>>

同步練習冊答案