【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角尺(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)若將圖1中的三角尺繞點O以每秒5°的速度,沿順時針方向旋轉(zhuǎn)t秒,當(dāng)OM恰好平分∠BOC時,如圖2.
①求t值;
②試說明此時ON平分∠AOC;
(2)將圖1中的三角尺繞點O順時針旋轉(zhuǎn),設(shè)∠AON=α,∠COM=β,當(dāng)ON在∠AOC內(nèi)部時,試求α與β的數(shù)量關(guān)系;
(3)若將圖1中的三角尺繞點O以每秒5°的速度沿順時針方向旋轉(zhuǎn)的同時,射線OC也繞點O以每秒8°的速度沿順時針方向旋轉(zhuǎn),如圖3,那么經(jīng)過多長時間,射線OC第一次平分∠MON?請說明理由.
【答案】(1)①t=3;②見解析;(2)β=α+60°;(3)t=5時,射線OC第一次平分∠MON.
【解析】
(1)根據(jù)角平分線的性質(zhì)以及余角補角的性質(zhì)即可得出結(jié)論;
(2)根據(jù)∠NOC=∠AOC-∠AON=90°-∠MOC即可得到結(jié)論;
(3)分別根據(jù)轉(zhuǎn)動速度關(guān)系和OC平分∠MON列方程求解即可.
(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.
∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;
②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.
(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;
(3)設(shè)旋轉(zhuǎn)時間為t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.
即t=5時,射線OC第一次平分∠MON.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,動點E,F分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.
(1)如圖1,當(dāng)點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理;
(2)如圖2,當(dāng)E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,求△ACE為等腰三角形時CE:CD的值;
(3)如圖3,當(dāng)E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC,D為BC上一點,E為AC上一點,AD=AE.
(1)如果∠BAD=10°,∠DAE=30°,那么∠EDC= °.
(2)如果∠ABC=60°,∠ADE=70°,那么∠BAD= °,∠CDE= °.
(3)設(shè)∠BAD=α,∠CDE=β猜想α,β之間的關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務(wù)的負(fù)責(zé)人,你認(rèn)為到哪家商場購買比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是( )
A. 27 B. 51 C. 69 D. 72
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖1是產(chǎn)品日銷售量y(單位:件)與時間t(單位:天)的函數(shù)關(guān)系,圖2是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是( )
A. 第24天的銷售量為200件 B. 第10天銷售一件產(chǎn)品的利潤是15元
C. 第12天與第30天這兩天的日銷售利潤相等 D. 第30天的日銷售利潤是750元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點A作AH⊥x軸,垂足為點H,點A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點P,使△AOP的面積為5?若存在,求點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.
(1)請?zhí)顚懴卤?/span>
A(噸) | B(噸) | 合計(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運費為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一元二次方程ax2+bx+c=0(a≠0)滿足4a-2b+c=0,且有兩個相等的實數(shù)根,則( )
A. b=aB. c=2aC. a(x+2)2=0(a≠0)D. a(x-2)2=0(a≠0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com