【題目】如圖,ACBC,C為垂足,CDAB,D為垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么點CAB的距離是_______,ABC的距離是________,BCD 的距離是_____,A、B兩點的距離是_________.

【答案】 4.8 6 6.4 10

【解析】試題分析:點到直線的距離是指垂線段的長度,兩點間的距離是連接兩點的線段的長度.

試題解析:點C到直線AB的垂線段是CD,所以線段CD的長是點C到直線AB的距離,即點CAB的距離是4.8;

A到直線BC的垂線段是AC,所以線段AC的長是點A到直線BC的距離,即點ABC的距離是6;

B到直線CD的垂線段是BD,所以線段BD的長是點B到直線CD的距離,即點BCD的距離是6.4;

B到點A的距離是線段AB的長,即點B到點A的距離是10,

故答案為:4.8,6,6.4,10.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在6×6的正方形網(wǎng)格中,每個小正方形的邊長都為1,請在所給網(wǎng)格中按下列要求畫出圖形.

(1)從點A出發(fā)的一條線段AB,使它的另一個端點落在格點(即小正方形的頂點)上,且長度為;

(2)以(1)中的AB為邊的一個等腰三角形ABC,使點C在格點上,請畫出所有滿足條件的點C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果直角三角形的一個銳角是另一個銳角的4倍,那么這個直角三角形中一個銳角的度數(shù)是( 。

A. B. 18° C. 27° D. 36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=6,BC=8
(1)求對角線AC的長;
(2)點E是線段CD上的一點,把△ADE沿著直線AE折疊.點D恰好落在線段AC上,點F重合,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確的有(  )

①兩條對角線相等的四邊形是矩形

②有一組鄰邊相等的平行四邊形是菱形

③對角線互相垂直平分的四邊形是正方形

④對角線相等且互相平分的四邊形是矩形.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,有一點C,過點C分別作CA⊥x軸,CB⊥y軸,點A、B是垂足.
定義:若長方形OACB的周長與面積的數(shù)值相等,則點C是平面直角坐標(biāo)系中的平衡點.
(1)請判斷下列是平面直角坐標(biāo)系中的平衡點的是;(填序號)
①E(1,2)②F(﹣4,4)
(2)若在第一象限中有一個平衡點N(4,m)恰好在一次函數(shù)y=﹣x+b(b為常數(shù))的圖象上;
①求m、b的值;
②一次函數(shù)y=﹣x+b(b為常數(shù))與y軸交于點D,問:在這函數(shù)圖象上,是否存在點M,使SOMD=3SOND , 若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.
(3)過點P(0,﹣2),且平行于x軸的直線上有平衡點Q嗎?若有,請求出平衡點Q的坐標(biāo);若沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABDBDC的平分線交于E,BE交CD于點F,1+2=90°.求證:

(1)ABCD;

(2)2+3=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果不等式 有解,那么m的取值范圍是( )
A.m>7
B.m≥7
C.m<7
D.m≤7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1個△A1BC中,∠B=30°,A1B=CB;在邊A1B上任取一點D,延長CA1到A2 , 使A1A2=A1D,得到第2個△A1A2D;在邊A2D上任取一點E,延長A1A2到A3 , 使A2A3=A2E,得到第3個△A2A3E,…按此做法繼續(xù)下去,則第n個三角形中以An為頂點的內(nèi)角度數(shù)是

查看答案和解析>>

同步練習(xí)冊答案