【題目】如圖,頂點(diǎn)坐標(biāo)為(2,﹣1)的拋物線(xiàn)y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).
(1)求拋物線(xiàn)的表達(dá)式;
(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;
(3)點(diǎn)E為直線(xiàn)BC上一動(dòng)點(diǎn),過(guò)點(diǎn)E作y軸的平行線(xiàn)EF,與拋物線(xiàn)交于點(diǎn)F.問(wèn)是否存在點(diǎn)E,使得以D、E、F為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y==x2-4x+3;
(2)AS△ACD=2;
(3)①∠DFE=90°時(shí),E1(2+,1-); E2(2-,1+);②∠EDF=90°時(shí),E3(1,2)、E4(4,-1).
【解析】
(1)已知拋物線(xiàn)的頂點(diǎn),可先將拋物線(xiàn)的解析式設(shè)為頂點(diǎn)式,再將點(diǎn)C的坐標(biāo)代入上面的解析式中,即可確定待定系數(shù)的值,由此得解.
(2)可先求出A、C、D三點(diǎn)坐標(biāo),求出△ACD的三邊長(zhǎng)后,可判斷出該三角形的形狀,進(jìn)而得到該三角形的面積.(也可將△ACD的面積視為梯形與兩個(gè)小直角三角形的面積差)
(3)由于直線(xiàn)EF與y軸平行,那么∠OCB=∠FED,若△OBC和△EFD相似,則△EFD中,∠EDF和∠EFD中必有一角是直角,可據(jù)此求出點(diǎn)F的橫坐標(biāo),再代入直線(xiàn)BC的解析式中,即可求出點(diǎn)E的坐標(biāo).
解:(1)依題意,設(shè)拋物線(xiàn)的解析式為 y=a(x-2)2-1,代入C(O,3)后,得:
a(0-2)2-1=3,a=1
∴拋物線(xiàn)的解析式:y=(x-2)2-1=x2-4x+3.
(2)由(1)知,A(1,0)、B(3,0);
設(shè)直線(xiàn)BC的解析式為:y=kx+3,代入點(diǎn)B的坐標(biāo)后,得:
3k+3=0,k=-1
∴直線(xiàn)BC:y=-x+3;
由(1)知:拋物線(xiàn)的對(duì)稱(chēng)軸:x=2,則 D(2,1);
∴AD==,AC==,CD==2,
即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD;
∴S△ACD=ADCD=××2=2.
(3)由題意知:EF∥y軸,則∠FED=∠OCB,若△OCB與△FED相似,則有:
①∠DFE=90°,即 DF∥x軸;
將點(diǎn)D縱坐標(biāo)代入拋物線(xiàn)的解析式中,得:
x2-4x+3=1,解得 x=2±;
當(dāng)x=2+時(shí),y=-x+3=1-;
當(dāng)x=2-時(shí),y=-x+3=1+;
∴E1(2+,1-)、E
②∠EDF=90°;
易知,直線(xiàn)AD:y=x-1,聯(lián)立拋物線(xiàn)的解析式有:
x2-4x+3=x-1,
x2-5x+4=0,
解得 x1=1、x2=4;
當(dāng)x=1時(shí),y=-x+3=2;
當(dāng)x=4時(shí),y=-x+3=-1;
∴E3(1,2)、E4(4,-1);
綜上,存在符合條件的點(diǎn)E,且坐標(biāo)為:(2+,1-)、(2-,1+)、(1,2)或(4,-1).
“點(diǎn)睛”此題主要考查了函數(shù)解析式的確定、圖形面積的解法以及相似三角形的判定和性質(zhì)等知識(shí);需要注意的是,已知兩個(gè)三角形相似時(shí),若對(duì)應(yīng)邊不相同,那么得到的結(jié)果就不一定相同,所以一定要進(jìn)行分類(lèi)討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為4,點(diǎn)O在對(duì)角線(xiàn)DB上運(yùn)動(dòng)(不與點(diǎn)B,D重合),連接OA,作OP⊥OA,交直線(xiàn)BC于點(diǎn)P.
(1)判斷線(xiàn)段OA,OP的數(shù)量關(guān)系,并說(shuō)明理由.
(2)當(dāng)OD=時(shí),求CP的長(zhǎng).
(3)設(shè)線(xiàn)段DO,OP,PC,CD圍成的圖形面積為S1,△AOD的面積為S2,求S1﹣S2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的頂點(diǎn)A(1,1),B(3,1),規(guī)定把正方形ABCD“先沿x軸翻折,再向左平移1個(gè)單位”為一次變換,這樣連續(xù)經(jīng)過(guò)2019次變換后,正方形ABCD的頂點(diǎn)C的坐標(biāo)為( 。
A. (﹣2018,3)B. (﹣2018,﹣3)
C. (﹣2016,3)D. (﹣2016,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“學(xué)習(xí)雷鋒活動(dòng)月”中,某校九(2)班全班同學(xué)都參加了“廣告清除、助老助殘、清理垃圾、義務(wù)植樹(shù)”四個(gè)志愿活動(dòng)(每人只參加一個(gè)活動(dòng)).為了了解情況,小明收集整理相關(guān)的數(shù)據(jù)后,繪制如圖所示,不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)求該班的人數(shù);
(2)請(qǐng)把折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中,廣告清除部分對(duì)應(yīng)的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分8分)
為了加強(qiáng)學(xué)生課外閱讀,開(kāi)闊視野,某校開(kāi)展了“書(shū)香校園,從我做起”的主題活動(dòng).學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)他們一周的課外閱讀時(shí)間進(jìn)行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:
請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
(1)頻數(shù)分布表中的 , ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)學(xué)校將每周課外閱讀時(shí)間在小時(shí)以上的學(xué)生評(píng)為“閱讀之星”,請(qǐng)你估計(jì)該校名學(xué)生中評(píng)為“閱讀之星”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)D,E,BD=CD,過(guò)點(diǎn)D作⊙O的切線(xiàn)交邊AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為2,CF=1,求的長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,矩形ABCD,AB=2,BC=4,對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,點(diǎn)P在對(duì)角線(xiàn)BD上,并且A,O,P組成以OP為腰的等腰三角形,那么OP的長(zhǎng)等于___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是正△ABC的外接圓,點(diǎn)D為圓上一點(diǎn),連接AD,分別過(guò)點(diǎn)B和點(diǎn)C作AD延長(zhǎng)線(xiàn)的垂線(xiàn),垂足分別為點(diǎn)E和點(diǎn)F,連接BD、CD,已知EB=3,FC=2,現(xiàn)在有如下4個(gè)結(jié)論:①∠CDF=60°;②△EDB∽△FDC;③BC=;④,其中正確的結(jié)論有( 。﹤(gè)
A. 1
B. 2
C. 3
D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點(diǎn),腰AB與⊙O相切于點(diǎn)D
(1)求證:AC是⊙O的切線(xiàn);
(2)如圖2,連接CD,若tan∠BCD=,⊙O的半徑為,求BC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com