【題目】如圖1,△ABC是等腰三角形,O是底邊BC中點(diǎn),腰AB與⊙O相切于點(diǎn)D

(1)求證:AC是⊙O的切線;

(2)如圖2,連接CD,若tanBCD,⊙O的半徑為,求BC的長.

【答案】(1)證明見解析;(2)BC=6.

【解析】

1)連接OD,作OFACF,如圖,利用等腰三角形的性質(zhì)得AOBCAO平分∠BAC,再根據(jù)切線的性質(zhì)得ODAB,然后利用角平分線的性質(zhì)得到OF=OD,從而根據(jù)切線的判定定理得到結(jié)論;
2)過DDFBCF,連接OD,根據(jù)三角函數(shù)的定義得到,設(shè)DF=aOF=x,則CF=4a,OC=4a-x根據(jù)相似三角形的性質(zhì)得到,根據(jù)勾股定理即可得到結(jié)論.

(1)證明:連接OD,OA,作OFACF,如圖,

∵△ABC為等腰三角形,O是底邊BC的中點(diǎn),

AOBC,AO平分∠BAC

AB與⊙O相切于點(diǎn)D,

ODAB

OFAC,

OFOD

AC是⊙O的切線;

(2)DDFBCF,連接OD

tanBCD,

,

設(shè)DFaOFx,則CF4aOC4ax,

O是底邊BC中點(diǎn),

OBOC4ax,

BFOBOF4a2x,

ODAB

∴∠BDO90°,

∴∠BDF+FDO90°

DFBC,

∴∠DFB=∠OFD90°,∠FDO+DOF90°,

∴∠BDF=∠DOF

∴△DFO∽△BFD,

,

,

解得:x1x2a

∵⊙O的半徑為,

OD

DF2+FO2DO2,

(x)2+x2()2

x1x2a1,

OC4ax3

BC2OC6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)坐標(biāo)為(2,﹣1)的拋物線yax2+bx+ca0)與y軸交于點(diǎn)C03),與x軸交于A、B兩點(diǎn).

1)求拋物線的表達(dá)式;

2)設(shè)拋物線的對稱軸與直線BC交于點(diǎn)D,連接ACAD,求△ACD的面積;

3)點(diǎn)E為直線BC上一動點(diǎn),過點(diǎn)Ey軸的平行線EF,與拋物線交于點(diǎn)F.問是否存在點(diǎn)E,使得以D、EF為頂點(diǎn)的三角形與△BCO相似?若存在,求點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實(shí)綠水青山就是金山銀山的發(fā)展理念,某市政部門招標(biāo)一工程隊(duì)負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù)該工程隊(duì)有兩種型號的挖掘機(jī),已知3型和5型挖掘機(jī)同時施工一小時挖土165立方米;4型和7型挖掘機(jī)同時施工一小時挖土225立方米每臺型挖掘機(jī)一小時的施工費(fèi)用為300,每臺型挖掘機(jī)一小時的施工費(fèi)用為180

(1)分別求每臺, 型挖掘機(jī)一小時挖土多少立方米?

(2)若不同數(shù)量的型和型挖掘機(jī)共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費(fèi)用不超過12960問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價與一件乙種玩具的進(jìn)價的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.

1)求每件甲種、乙種玩具的進(jìn)價分別是多少元?

2)商場計劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進(jìn)貨的總資金不超過1000元,求商場共有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價與每天銷售量之間滿足如圖所示的關(guān)系.

求出yx之間的函數(shù)關(guān)系式;

寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x+2y軸交于A點(diǎn),與反比例函數(shù)yx0)的圖象交于點(diǎn)M,過MMHx軸于點(diǎn)H,且tanAHO2

1)求H點(diǎn)的坐標(biāo)及k的值;

2)點(diǎn)Py軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點(diǎn)坐標(biāo);

3)點(diǎn)Na,1)是反比例函數(shù)yx0)圖象上的點(diǎn),點(diǎn)Qm,0)是x軸上的動點(diǎn),當(dāng)△MNQ的面積為3時,請求出所有滿足條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,ACBD相交于點(diǎn)OAB4,BD4,EAB的中點(diǎn),點(diǎn)P為線段AC上的動點(diǎn),則EP+BP的最小值為( 。

A. 4B. 2C. 2D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+ax+nb01≤n≤3,n為整數(shù)),其中a是從2、46三個數(shù)中任取的一個數(shù),b是從13、5三個數(shù)中任取的一個數(shù),定義方程有實(shí)數(shù)根為事件Ann1,23),當(dāng)An的概率最小時,n的所有可能值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】書香校園活動中,某校為了解學(xué)生家庭藏書情況,隨機(jī)抽取本校部分學(xué)生進(jìn)行調(diào)查,并繪制成部分統(tǒng)計圖表如下:

類別

家庭藏書m

學(xué)生人數(shù)

A

0≤m≤25

20

B

26≤m≤100

a

C

101≤m≤200

50

D

m≥201

66

根據(jù)以上信息,解答下列問題:

(1)該調(diào)查的樣本容量為_____,a_____;

(2)在扇形統(tǒng)計圖中,“A”對應(yīng)扇形的圓心角為_____°;

(3)若該校有2000名學(xué)生,請估計全校學(xué)生中家庭藏書200本以上的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案