精英家教網(wǎng)如圖,已知Rt△ABC外切于⊙O,E、F、H為切點(diǎn),∠ABC=90°,直線FE、CB相交于D點(diǎn),連接AO、HE、HF,則下列結(jié)論:①∠EFH=45°;②∠FEH=45°+∠FAO;③BD=AF;④DH2=AO•DF.其中正確結(jié)論的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
分析:連接OE,OH,OF,OB,
①由切線的性質(zhì)和四邊形的內(nèi)角和即可判定;
②同①的方法得∠FOH=180°-∠C=90°+∠BAC,再圓周角定理即可得到證明結(jié)論正確;
③根據(jù)已知條件知道四邊形OEBH是正方形,然后證明△BDE≌△FAO,然后即可題目結(jié)論;
④根據(jù)已知條件可以證明△DFH∽△ABO,根據(jù)相似三角形的對(duì)應(yīng)邊成比例和已知條件即可證明結(jié)論正確.
解答:精英家教網(wǎng)解:①中,連接OE,OH,
則OE⊥AB,OH⊥BC,
∴∠EOH=90°,
∴∠EFH=
1
2
∠EOH=45°,正確;

②中,同①的方法得∠FOH=180°-∠C=90°+∠BAC,
根據(jù)圓周角定理得∠FEH=
1
2
∠FOH=45°+∠FAO,正確;

③中,連接OF,由①得四邊形OEBH是正方形,則圓的半徑=BE,
即OF=BE,
又∵∠DBE=∠AFO,∠BED=∠AEF=∠AFE,
則△BDE∽△FAO,
得BD=AF,正確;

④中,連接OB,根據(jù)兩個(gè)角對(duì)應(yīng)相等得△DFH∽△ABO,則DH•AB=AO•DF,又∵AB=DH,所以結(jié)論正確.
故選D.
點(diǎn)評(píng):此題綜合運(yùn)用了切線的性質(zhì)定理、切線長(zhǎng)定理、圓周角定理和相似三角形的性質(zhì)和判定,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知Rt△ABC,AB=AC,∠ABC的平分線BD交AC于點(diǎn)D,BD的垂直平分線分別交AB,BC于點(diǎn)E、F,CD=CG.
(1)請(qǐng)以圖中的點(diǎn)為頂點(diǎn)(不增加其他的點(diǎn))分別構(gòu)造兩個(gè)菱形和兩個(gè)等腰梯形.那么,構(gòu)成菱形的四個(gè)頂點(diǎn)是
B,E,D,F(xiàn)
E,D,C,G
;構(gòu)成等腰梯形的四個(gè)頂點(diǎn)是
B,E,D,C
E,D,G,F(xiàn)

(2)請(qǐng)你各選擇其中一個(gè)圖形加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC是⊙O的內(nèi)接三角形,∠BAC=90°,AH⊥BC,垂足為D,過(guò)點(diǎn)B作弦BF交AD于點(diǎn)精英家教網(wǎng)E,交⊙O于點(diǎn)F,且AE=BE.
(1)求證:
AB
=
AF
;
(2)若BE•EF=32,AD=6,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延長(zhǎng)線上一點(diǎn),PE⊥AB交BA延長(zhǎng)線于E,PF⊥AC交AC延長(zhǎng)線于F,D為BC中點(diǎn),連接DE,DF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中,∠CAB=30°,BC=5.過(guò)點(diǎn)A做AE⊥AB,且AE=15,連接BE交AC于點(diǎn)P.
(1)求PA的長(zhǎng);
(2)以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷BE與⊙A是否相切,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC中∠A=90°,AB=3,AC=4.將其沿邊AB向右平移2個(gè)單位得到△FGE,則四邊形ACEG的面積為
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案