【題目】拋物線y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點,與y軸交于點C(0,2).
(1)求拋物線的解析式;
(2)點P從點O出發(fā),乙每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設(shè)點P的運動時間t秒(0<t<2).
①過點E作x軸的平行線,與BC相交于點D(如圖所示),當(dāng)t為何值時, 的值最小,求出這個最小值并寫出此時點E、P的坐標(biāo);
②在滿足①的條件下,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請直接寫出點F的坐標(biāo);若不存在,請說明理由.
【答案】
(1)
解:∵y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點,與y軸交于點C(0,2).
∴ ,
解得:
∴拋物線的解析式為y= x2﹣ x+2.
(2)
解:①由題意得:OP=2t,OE=t,
∵DE∥OB,
∴△CDE∽△CBO,
∴ ,即 ,
∴DE=4﹣2t,
∴ ,
∵0<t<2,1﹣(t﹣1)2始終為正數(shù),且t=1時,1﹣(t﹣1)2有最大值1,
∴t=1時, 有最小值1,即t=1時, 有最小值1,此時OP=2,OE=1,
∴E(0,1),P(2,0);
②存在,
∵拋物線y= x2﹣ x+2的對稱軸方程為x=3,
設(shè)F(3,m),
∴EP2=5,PF2=(3﹣2)2+m2,EF2=(m﹣1)2+32,
當(dāng)△EFP為直角三角形時,
(a)當(dāng)∠EPF=90°時,
EP2+PF2=EF2,
即5+1+m2=(m﹣1)2+32,
解得:m=2,
(b)當(dāng)∠EFP=90°時,
EF2+FP2=PE2,
即(m﹣1)2+32+(3﹣2)2+m2=5,
此方程無解,不合題意舍去,
∴當(dāng)∠EFP=90°時,
這種情況不存在,
(c)當(dāng)∠PEF=90°時,
EF2+PE2=PF2,
即(m﹣1)2+32+5=(3﹣2)2+m2,
解得:m=7,
∴F(3,2),(3,7).
【解析】(1)利用待定系數(shù)法求函數(shù)解析式即可;(2)①由題意得:OP=2t,OE=t,通過△CDE∽△CBO得到 ,即 ,求得 有最小值1,即可求得結(jié)果;②存在,求得拋物線y= x2﹣ x+2的對稱方程為x=3,設(shè)F(3,m),當(dāng)△EFP為直角三角形時(a)當(dāng)∠EPF=90°時,(b)當(dāng)∠EFP=90°時,(c)當(dāng)∠PEF=90°時,根據(jù)勾股定理列方程即可求得結(jié)果.
【考點精析】通過靈活運用二次函數(shù)的圖象和二次函數(shù)的性質(zhì),掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB與x軸交于點B,與y軸交于點A,與反比例函數(shù)y= 的圖象在第二象限交于點C,CE⊥x軸,垂足為點E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限上的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果S△BAF=4S△DFO , 求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在直角梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,AB為⊙O的直徑.動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以3cm/s的速度運動,P、Q兩點同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點也隨之停止運動.設(shè)運動時間為t,求:
(1)t分別為何值時,四邊形PQCD為平行四邊形、等腰梯形?
(2)t分別為何值時,直線PQ與⊙O相切、相離、相交?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F= ,求cos∠ACB的值和線段PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,點E在正方形ABCD的邊BC上,BF⊥AE于點F,DG⊥AE于點G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點B、C分別在∠MAN的邊AM、AN上,點E、F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,0),直線y=x+m與該二次函數(shù)的圖象交于A、B兩點,其中A點的坐標(biāo)為(3,4),B點在y軸上.
(1)求m的值及這個二次函數(shù)的關(guān)系式;
(2)P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在一點P,使得四邊形DCEP是平行四邊形?若存在,請求出此時P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為提高學(xué)生身體素質(zhì),決定開展足球、籃球、臺球、乒乓球四項課外體育活動,并要求學(xué)生必須并且只能選擇一項.為了解選擇各種體育活動項目的學(xué)生人數(shù),隨機抽取了部分學(xué)生進行調(diào)查,并繪制出以下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下列問題.(要求寫出簡要的解答過程)
(1)這次活動一共調(diào)查了多少名學(xué)生?
(2)補全條形統(tǒng)計圖.
(3)若該學(xué)校總?cè)藬?shù)是1300人,請估計選擇籃球項目的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC與點G,連結(jié)AG、CF.則S△FCG為( )
A.3.6
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com