精英家教網 > 初中數學 > 題目詳情

【題目】感知:如圖①,點E在正方形ABCD的邊BC上,BF⊥AE于點F,DG⊥AE于點G,可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點B、C分別在∠MAN的邊AM、AN上,點E、F在∠MAN內部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC,求證:△ABE≌△CAF.
應用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為________.

【答案】拓展:
證明:∵∠1=∠2,
∴∠BEA=∠AFC,
∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,
∴∠BAC=∠ABE+∠3,
∴∠4=∠ABE,

∴△ABE≌△CAF(AAS).
應用:
解:∵在等腰三角形ABC中,AB=AC,CD=2BD,
∴△ABD與△ADC等高,底邊比值為:1:2,
∴△ABD與△ADC面積比為:1:2,
∵△ABC的面積為9,
∴△ABD與△ADC面積分別為:3,6;
∵∠1=∠2,
∴∠BEA=∠AFC,
∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,
∴∠BAC=∠ABE+∠3,
∴∠4=∠ABE,
,
∴△ABE≌△CAF(AAS),
∴△ABE與△CAF面積相等,
∴△ABE與△CDF的面積之和為△ADC的面積,
∴△ABE與△CDF的面積之和為6,
故答案為:6.

【解析】拓展:利用∠1=∠2=∠BAC,利用三角形外角性質得出∠4=∠ABE,進而利用AAS證明△ABE≌△CAF;應用:首先根據△ABD與△ADC等高,底邊比值為:1:2,得出△ABD與△ADC面積比為:1:2,再證明△ABE≌△CAF,即可得出△ABE與△CDF的面積之和為△ADC的面積得出答案即可.
【考點精析】關于本題考查的等腰三角形的性質和正方形的性質,需要了解等腰三角形的兩個底角相等(簡稱:等邊對等角);正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在求1+3+32+33+34+35+36+37+38的值時,張紅發(fā)現:從第二個加數起每一個加數都是前一個加數的3倍,于是她假設:S=1+3+32+33+34+35+36+37+38①,
然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
隨意S=
得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖:半徑為2的圓心P在直線y=2x﹣1上運動,當⊙P與x軸相切時圓心P的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把直線y=﹣x﹣3向上平移m個單位,與直線y=2x+4的交點在第二象限,則m的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,反映的是九(1)班學生外出乘車、步行、騎車的人數直方圖的一部分和圓形分布圖,下列說法①①九(1)班外出步行有8人;②在圓形統(tǒng)計圖中,步行人數所占的圓心角度數為82°;③九(1)班外出的學生共有40人;④若該校九年級外出的學生共有500人,那么估計全年級外出騎車的人約有150人,其中正確的結論是(  )

A.①②③
B.①③④
C.②③
D.②④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)與x軸交于A(2,0),B(4,0)兩點,與y軸交于點C(0,2).

(1)求拋物線的解析式;
(2)點P從點O出發(fā),乙每秒2個單位長度的速度向點B運動,同時點E也從點O出發(fā),以每秒1個單位長度的速度向點C運動,設點P的運動時間t秒(0<t<2).
①過點E作x軸的平行線,與BC相交于點D(如圖所示),當t為何值時, 的值最小,求出這個最小值并寫出此時點E、P的坐標;
②在滿足①的條件下,拋物線的對稱軸上是否存在點F,使△EFP為直角三角形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c的頂點為B(﹣1,3),與x軸的交點A在點(﹣3,0)和(﹣2,0)之間,以下結論: ①b2﹣4ac=0;②a+b+c>0;③2a﹣b=0;④c﹣a=3
其中正確的有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△AOB的斜邊OA在x軸的正半軸上,∠OBA=90°,且tan∠AOB= ,OB=2 ,反比例函數y= 的圖象經過點B.

(1)求反比例函數的表達式;
(2)若△AMB與△AOB關于直線AB對稱,一次函數y=mx+n的圖象過點M、A,求一次函數的表達式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,A點的坐標為(4,3),過A點分別作坐標軸的垂線,交x軸和y軸分別于B點和C點,P為線段AB上一個動點(P不與A,B重合),過點P的反比例函數y= 的圖象與AC交于點D.


(1)當△PBC的面積等于4時,求該反比例函數的解析式;
(2)當k為何值時,△PBD的面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案