【題目】小王玩游戲:一張紙片,第一次將其撕成四小片,以后每次都將其中一片撕成更小的四片,如此進行下去.
(1)填空:當小王撕了3次后,共有張紙片;
(2)填空:當小王撕了n次后,共有張紙片.(用含n的代數(shù)式表示)
(3)小王說:我撕了若干次后,共有紙片2013張,小王說的對不對?若不對,請說明你的理由;若對的,請指出小王需撕多少次?
【答案】
(1)10
(2)3n+1
(3)
解:將2013代入s=3n+1中可得:n=670 ,
∵這個數(shù)不是整數(shù),
∴小王說的不對
【解析】解:(1)從圖中可以看出,當小王撕了1次時,手中有4張紙=3×1+1;
當小王撕了2次時,手中有7張紙=3×2+1;
…
可以發(fā)現(xiàn):小王撕了幾次后,他手中紙的張數(shù)等于3與幾的乘積加1.
所以,當小王撕了3次時,手中有3×3+1=10張紙.
答:當小王撕了3次時,手中有10張紙;(2)設撕的次數(shù)為n,紙的張數(shù)為s,按照(1)中的規(guī)律可得:s=3n+1.
答:代數(shù)式為s=3n+1;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為A的拋物線y=a(x+2)2﹣4交x軸于點B(1,0),連接AB,過原點O作射線OM∥AB,過點A作AD∥x軸交OM于點D,點C為拋物線與x軸的另一個交點,連接CD.
(1)求拋物線的解析式、直線AB的解析式;
(2)若動點P從點O出發(fā),以每秒1個單位長度的速度沿線段OD向點D運動,同時動點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CO向點O運動,當其中一個點停止運動時另一個點也隨之停止運動.
問題一:當t為何值時,△OPQ為等腰三角形?
問題二:當t為何值時,四邊形CDPQ的面積最?并求此時PQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】1或5 △ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點D為AB的中點.如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.若點Q的運動速度為v厘米/秒,則當△BPD與△CQP全等時,v的值為
A. 2 B. 3 C. 2或3 D. 1或5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列語句正確的個數(shù)是( 。
①不相交的兩條直線叫做平行線;②兩點之間直線最短;③只有一個公共點的兩條直線叫做相交直線;④兩點確定一條直線.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OP是∠BOC的平分線,OE⊥AB,OF⊥CD,
(1)圖中除直角外,還有相等的角嗎?請寫出兩對:①;② .
(2)如果∠AOD=40°,則①∠BOC=;②OP是∠BOC的平分線,所以∠COP=度;③求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在矩形ABCD中,連接對角線AC,將△ABC繞點B順時針旋轉90°得到△EFG,并將它沿直線AB向左平移,直線EG與BC交于點H,連接AH,CG.
(1)如圖①,當AB=BC,點F平移到線段BA上時,線段AH,CG有怎樣的數(shù)量關系和位置關系?直接寫出你的猜想;
(2)如圖②,當AB=BC,點F平移到線段BA的延長線上時,(1)中的結論是否成立,請說明理由;
(3)如圖③,當AB=nBC(n≠1)時,對矩形ABCD進行如已知同樣的變換操作,線段AH,CG有怎樣的數(shù)量關系和位置關系?直接寫出你的猜想.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com