【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示:
(1)甲乙兩地相距 千米,慢車速度為 千米/小時(shí).
(2)求快車速度是多少?
(3)求從兩車相遇到快車到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式.
(4)直接寫出兩車相距300千米時(shí)的x值.
【答案】(1)600, 60;(2)快車速度是90千米/小時(shí);(3)從兩車相遇到快車到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式為y=150x﹣600;(4)當(dāng)x=2小時(shí)或x=6小時(shí)時(shí),兩車相距300千米.
【解析】
1)由當(dāng)x=0時(shí)y=600可得出甲乙兩地間距,再利用速度=兩地間距÷慢車行駛的時(shí)間,即可求出慢車的速度;
(2)設(shè)快車的速度為a千米/小時(shí),根據(jù)兩地間距=兩車速度之和×相遇時(shí)間,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;
(3)分別求出快車到達(dá)甲地的時(shí)間及快車到達(dá)甲地時(shí)兩車之間的間距,根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出該函數(shù)關(guān)系式;
(4)利用待定系數(shù)法求出當(dāng)0≤x≤4時(shí)y與x之間的函數(shù)關(guān)系式,將y=300分別代入0≤x≤4時(shí)及4≤x≤時(shí)的函數(shù)關(guān)系式中求出x值,此題得解.
(1)∵當(dāng)x=0時(shí),y=600,
∴甲乙兩地相距600千米.
600÷10=60(千米/小時(shí)).
故答案為:600;60.
(2)設(shè)快車的速度為a千米/小時(shí),
根據(jù)題意得:4(60+a)=600,
解得:a=90.
答:快車速度是90千米/小時(shí).
(3)快車到達(dá)甲地的時(shí)間為600÷90=(小時(shí)),
當(dāng)x=時(shí),兩車之間的距離為60×=400(千米).
設(shè)當(dāng)4≤x≤時(shí),y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),
∵該函數(shù)圖象經(jīng)過(guò)點(diǎn)(4,0)和(,400),
∴,解得:,
∴從兩車相遇到快車到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式為y=150x﹣600.
(4)設(shè)當(dāng)0≤x≤4時(shí),y與x之間的函數(shù)關(guān)系式為y=mx+n(m≠0),
∵該函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,600)和(4,0),
∴,解得:,
∴y與x之間的函數(shù)關(guān)系式為y=﹣150x+600.
當(dāng)y=300時(shí),有﹣150x+600=300或150x﹣600=300,
解得:x=2或x=6.
∴當(dāng)x=2小時(shí)或x=6小時(shí)時(shí),兩車相距300千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC, BD、CE是高,BD與CE相交于點(diǎn)O,
求證:(1)OB=OC;
(2)點(diǎn)O在∠BAC的角平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,對(duì)角線與相交于點(diǎn),平分,交于點(diǎn).
求證:;
點(diǎn)、點(diǎn)分別同時(shí)從、兩點(diǎn)出發(fā),以相同的速度運(yùn)動(dòng)相同的時(shí)間后同時(shí)停止,如圖,平分,交于點(diǎn),過(guò)點(diǎn)作,垂足為,請(qǐng)猜想,與三者之間的數(shù)量關(guān)系,并證明你的猜想;
在的條件下,當(dāng),時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,點(diǎn)A(1,1),B(3,1),C(3,2),反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)D,且與AB相交于點(diǎn)E,
(1)求反比例函數(shù)的解析式;
(2)過(guò)點(diǎn)C、E作直線,求直線CE的解析式;
(3)如圖2,將矩形ABCD沿直線CE平移,使得點(diǎn)C與點(diǎn)E重合,求線段BD掃過(guò)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在△ABC中,∠ACB=90°,AC=BC,D為直線AB上一點(diǎn),作直線CD,AE⊥CD于E,BF⊥CD于F.
(1)若D在線段AB上,如圖,試猜想線段EF、AE和BF之間的數(shù)量關(guān)系,并證明你的猜想;
(2)若D在線段AB的延長(zhǎng)線上,請(qǐng)你根據(jù)題意畫出圖形,試猜想線段EF、AE和BF之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC是邊長(zhǎng)為8的等邊三角形,AD⊥BC于點(diǎn)D,DE⊥AB于點(diǎn)E.
(1)求證:AE=3EB
(2)若點(diǎn)F是AD的中點(diǎn),點(diǎn)P是BC邊上的動(dòng)點(diǎn),連接PE,PF,如圖2所示,求PE+PF的最小值及此時(shí)BP的長(zhǎng);
(3)在(2)的條件下,連接EF,當(dāng)PE+PF取最小值時(shí),△PEF的面積是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】.閱讀:若x滿足(80﹣x)(x﹣60)=30,求的值.
解:設(shè)(80﹣x)=a,(x﹣60)=b,則(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,
所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340,
請(qǐng)仿照上例解決下面的問(wèn)題:
(1)若 x 滿足(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值.
(2)如圖,正方形 ABCD 的邊長(zhǎng)為 x,AE=10,CG=25,長(zhǎng)方形 EFGD 的面積是500,四邊形 NGDH 和 MEDQ 都是正方形,PQDH 是長(zhǎng)方形,那么圖中陰影部分的面積等于_____(結(jié)果必須是一個(gè)具體數(shù)值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AC=BC,∠ACB=90°,D、E是直線AB上兩點(diǎn).∠DCE=45°
(1)當(dāng)CE⊥AB時(shí),點(diǎn)D與點(diǎn)A重合,求證:DE2=AD2+BE2
(2)當(dāng)AB=4時(shí),求點(diǎn)E到線段AC的最短距離
(3)當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),探究:DE2=AD2+BE2是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,⊙O是△ABC的內(nèi)切圓,D、E、F是切點(diǎn).
(1)求證:四邊形ODCE是正方形;
(2)如果AC=6,BC=8,求內(nèi)切圓⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com