【題目】如圖,拋物線x軸交于A(-1,0)B(3,0)兩點(diǎn),交y軸于點(diǎn)E.

(1)求此拋物線的解析式.

(2)若直線y=x+1與拋物線交于A、D兩點(diǎn),與y軸交于點(diǎn)F,連接DE,求DEF的面積.

【答案】(1)y=x2﹣2x﹣3;(2)S△DEF=8.

【解析】

(1)利用待定系數(shù)法求二次函數(shù)解析式即可;

(2)首先求出直線與二次函數(shù)的交點(diǎn)坐標(biāo)進(jìn)而得出E,F點(diǎn)坐標(biāo),即可得出DEF的面積.

解:(1)∵拋物線y=x2+bx+cx軸交于A(﹣1,0)和B3,0)兩點(diǎn),

,

解得:,

故拋物線解析式為:y=x22x3;

(2)根據(jù)題意得:

解得:,,∴D4,5),

對(duì)于直線y=x+1,當(dāng)x=0時(shí),y=1,∴F01),

對(duì)于y=x22x3,當(dāng)x=0時(shí),y=3,∴E0,﹣3),

EF=4,

過點(diǎn)DDMy軸于點(diǎn)M

SDEF=EF·DM=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,運(yùn)載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于地面R處的雷達(dá)測(cè)得AR的距離是40km,仰角是30°,n秒后,火箭到達(dá)B點(diǎn),此時(shí)仰角是45°,則火箭在這n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰RtABC和等腰RtADE,CDBEAE分別交于點(diǎn)P,M.對(duì)于下列結(jié)論:①△BAE∽△CAD;MPMDMAME;2CB2CPCM.其中正確的是(   )

A. ①②③ B. C. ①② D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角△ABC中,∠C=90°,AC15,BC20,點(diǎn)DAB邊上一動(dòng)點(diǎn),若AD的長(zhǎng)度為m,且m的范圍為0m9,在ACBC邊上分別取兩點(diǎn)E、F,滿足EDABFEED

1)求DE的長(zhǎng)度;(用含m的代數(shù)式表示)

2)求EF的長(zhǎng)度;(用含m的代數(shù)式表示)

3)請(qǐng)根據(jù)m的不同取值,探索過D、E、F三點(diǎn)的圓與△ABC三邊交點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形的邊長(zhǎng)為,點(diǎn),分別在軸正半軸與軸正半軸上,是對(duì)角線.點(diǎn)點(diǎn)出發(fā)向點(diǎn)運(yùn)動(dòng)(不與點(diǎn),重合),到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng),射線軸于點(diǎn),軸于點(diǎn),交軸于點(diǎn),連結(jié),.

1)求證:;

2)請(qǐng)?zhí)骄浚?/span>的面積是否變化?若不變化,試求出的面積;若變化,請(qǐng)說明理由;

3)當(dāng)為何值時(shí),是等腰直角三角形;

4)過點(diǎn)作,垂足為點(diǎn),請(qǐng)直接寫出點(diǎn)運(yùn)動(dòng)的路線長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖像如圖所示,則下列五個(gè)結(jié)論中:①albic0;②ab+c0;③2ab0;④abc0;⑤4a+2b+c0,錯(cuò)誤的個(gè)數(shù)有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是拋物線y=﹣x2+x+2在第一象限上的點(diǎn),過點(diǎn)P分別向x軸和y軸引垂線,垂足分別為AB,則四邊形OAPB周長(zhǎng)的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在半徑為1的扇形AOB中,∠AOB90°,點(diǎn)C是弧AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合)ODBCOEAC,垂足分別為D、E

1)當(dāng)時(shí),求線段OD的長(zhǎng);

2)在△DOE中是否存在長(zhǎng)度保持不變的邊?如果存在,請(qǐng)指出是哪條邊,并求其長(zhǎng)度;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案