【題目】永康市某校在課改中,開設的選修課有:籃球,足球,排球,羽毛球,乒乓球,學生可根據(jù)自己的愛好選修一門,李老師對九(1)班全班同學的選課情況進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖).
(1)該班共有學生 人,并補全條形統(tǒng)計圖;
(2)求“籃球”所在扇形圓心角的度數(shù);
(3)九(1)班班委4人中,甲選修籃球,乙和丙選修足球,丁選修排球,從這4人中任選2人,請你用列表或畫樹狀圖的方法,求選出的2人中恰好為1人選修籃球,1人選修足球的概率.
【答案】(1)50,圖形見解析;(2)72°;(3)
【解析】
(1)用排球的人數(shù)除以它所占的百分比即可得到全班人數(shù),用總?cè)藬?shù)減去其它選課的人數(shù)求出乒乓球的人數(shù),從而補全統(tǒng)計圖;
(2)用籃球的所占百分比乘以360°即可得到在扇形統(tǒng)計圖中“籃球”對應扇形的圓心角的度數(shù);
(3)先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出選出的2人恰好1人選修籃球,1人選修足球所占結(jié)果數(shù),然后根據(jù)概率公式求解.
(1)該班共有學生(人),
乒乓球有50﹣10﹣12﹣9﹣5=14(人),
補圖如下:
故答案為:50;
(2);
(3)根據(jù)題意畫圖如下:用A表示籃球,用B表示足球,用C表示排球;
共有12種等可能的結(jié)果數(shù),其中選出的2人恰好1人選修籃球,1人選修足球占4種,
所以選出的2人恰好1人選修籃球,1人選修足球的概率
所求的概率為 .
科目:初中數(shù)學 來源: 題型:
【題目】2019年3月30日,四川省涼山州木里縣境內(nèi)發(fā)生森林火災,30名左右的撲火英雄犧牲,讓人感到痛心,也再次給我們的防火安全意識敲響警鐘.為了加強學生的防火安全意識,某校舉行了一次“防火安全知識競賽”(滿分100分),賽后從中抽取了部分學生的成績進行整理,并制作了如下不完整的統(tǒng)計圖表:
組別 | 成績x/分 | 組中值 |
A | 50≤x<60 | 55 |
B | 60≤x<70 | 65 |
C | 70≤x<80 | 75 |
D | 80≤x<90 | 85 |
E | 90≤x<100 | 95 |
請根據(jù)圖表提供的信息,解答下列各題:
(1)補全頻數(shù)分布直方圖和扇形統(tǒng)計圖;
(2)分數(shù)段80≤x<90對應扇形的圓心角的度數(shù)是 °,所抽取的學生競賽成績的中位數(shù)落在 區(qū)間內(nèi);
(3)若將每組的組中值(各組兩個端點的數(shù)的平均數(shù))代表各組每位學生的競賽成績,請你估計該校參賽學生的平均成績.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(-1,0),頂點坐標為(1,m),與y軸交點在(0,3),(0,4)之(不包含端點),現(xiàn)有下列結(jié)論:①3a+b>0;②-<a<-1;③關于x的方程ax2+bx+c=m-2有兩個不相等的實數(shù)根:④若點M(-1.5,y1),N(2.5,y2)是函數(shù)圖象上的兩點,則y1=y2.其中正確結(jié)論的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,點O在對角線DB上運動(不與點B,D重合),連接OA,作OP⊥OA,交直線BC于點P.
(1)判斷線段OA,OP的數(shù)量關系,并說明理由.
(2)當OD=時,求CP的長.
(3)設線段DO,OP,PC,CD圍成的圖形面積為S1,△AOD的面積為S2,求S1﹣S2的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于A(﹣1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點C,作CD垂直x軸于點D,連接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當點C落在拋物線上時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CB=CA,∠ACB=90°,點D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,得出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC.其中正確結(jié)論的個數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當點C與點M重合時AC的長.
【答案】(1)①1;②40°;(2),90°;(3)AC的長為3或2.
【解析】
(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;
②由△COA≌△DOB,得∠CAO=∠DBO,根據(jù)三角形的內(nèi)角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;
(2)根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,則,由全等三角形的性質(zhì)得∠AMB的度數(shù);
(3)正確畫圖形,當點C與點M重合時,有兩種情況:如圖3和4,同理可得:△AOC∽△BOD,則∠AMB=90°,,可得AC的長.
(1)問題發(fā)現(xiàn):
①如圖1,
∵∠AOB=∠COD=40°,
∴∠COA=∠DOB,
∵OC=OD,OA=OB,
∴△COA≌△DOB(SAS),
∴AC=BD,
∴
②∵△COA≌△DOB,
∴∠CAO=∠DBO,
∵∠AOB=40°,
∴∠OAB+∠ABO=140°,
在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,
(2)類比探究:
如圖2,,∠AMB=90°,理由是:
Rt△COD中,∠DCO=30°,∠DOC=90°,
∴,
同理得:,
∴,
∵∠AOB=∠COD=90°,
∴∠AOC=∠BOD,
∴△AOC∽△BOD,
∴ ,∠CAO=∠DBO,
在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;
(3)拓展延伸:
①點C與點M重合時,如圖3,
同理得:△AOC∽△BOD,
∴∠AMB=90°,,
設BD=x,則AC=x,
Rt△COD中,∠OCD=30°,OD=1,
∴CD=2,BC=x-2,
Rt△AOB中,∠OAB=30°,OB=,
∴AB=2OB=2,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x2)2=(2)2,
x2-x-6=0,
(x-3)(x+2)=0,
x1=3,x2=-2,
∴AC=3;
②點C與點M重合時,如圖4,
同理得:∠AMB=90°,,
設BD=x,則AC=x,
在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,
(x)2+(x+2)2=(2)2.
x2+x-6=0,
(x+3)(x-2)=0,
x1=-3,x2=2,
∴AC=2;.
綜上所述,AC的長為3或2.
點睛:本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,幾何變換問題,解題的關鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運用類比的思想解決問題,本題是一道比較好的題目.
【題型】解答題
【結(jié)束】
25
【題目】如圖,已知拋物線y=ax2+bx﹣3(a≠0)經(jīng)過點A(3,0),B(﹣1,0).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標;
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的頂點A(1,1),B(3,1),規(guī)定把正方形ABCD“先沿x軸翻折,再向左平移1個單位”為一次變換,這樣連續(xù)經(jīng)過2019次變換后,正方形ABCD的頂點C的坐標為( 。
A. (﹣2018,3)B. (﹣2018,﹣3)
C. (﹣2016,3)D. (﹣2016,﹣3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,矩形ABCD,AB=2,BC=4,對角線AC,BD相交于點O,點P在對角線BD上,并且A,O,P組成以OP為腰的等腰三角形,那么OP的長等于___.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com