【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,CE平分∠ACB,交AB于點E.
(1)求證:AC平分∠DAB;
(2)求證:△PCE是等腰三角形.
【答案】
(1)
解:如圖1所示:連接OC.
∵PD切⊙O于點C,
∴OC⊥PD.
又∵AD⊥PD,
∴OC∥AD.
∴∠ACO=∠DAC.
又∵OC=OA,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB
(2)
解:∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB為⊙O的直徑,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACE=∠BCE,
∴∠CAO+∠ACE=∠PCB+∠BCE,
∴∠PEC=∠PCE,
∴PC=PE,
即△PCE是等腰三角形
【解析】(1)依據(jù)切線的性質(zhì)可知OC⊥DC,然后可證明AD∥OC,依據(jù)平行線的性質(zhì)可得到∠DAC=∠ACO,然后依據(jù)OA=OC可證明∠OAC=∠ACO,通過等量代換可證明AC平分∠DAB;(2)依據(jù)直徑所對的圓周角等于90°可證明∠ACB=90°,然后依據(jù)同角的余角相等可證明∠DAC=∠BCP,由(1)可知AC平分∠DAB,從而得到∠CAE=∠BCP,然后結合∠ACE=∠ECB可證明∠PCE=∠PEC.
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y= .
(1)若該反比例函數(shù)的圖象與直線y=kx+4(k≠0)只有一個公共點,求k的值;
(2)如圖,反比例函數(shù)y= (1≤x≤4)的圖象記為曲線C1 , 將C1向左平移2個單位長度,得曲線C2 , 請在圖中畫出C2 , 并直接寫出C1平移至C2處所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,港口B位于港口O正西方向120km處,小島C位于港口O北偏西60°的方向.一艘游船從港口O出發(fā),沿OA方向(北偏西30°)以vkm/h的速度駛離港口O,同時一艘快艇從港口B出發(fā),沿北偏東30°的方向以60km/h的速度駛向小島C,在小島C用1h加裝補給物資后,立即按原來的速度給游船送去.
(1)快艇從港口B到小島C需要多長時間?
(2)若快艇從小島C到與游船相遇恰好用時1h,求v的值及相遇處與港口O的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若將△ABC繞點C逆時針旋轉90°后得到△A′B′C′,
(1)在圖中畫出△A′B′C′;
(2)求出點A經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將線段AB繞點O順時針旋轉90°得到線段A′B′,那么A(﹣2,5)的對應點A′的坐標是( )
A.(2,5)
B.(5,2)
C.(4, )
D.( ,4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】冬天來了,曬衣服成了頭疼的事情,聰明的小華想到一個好辦法,在家后院地面(BD)上立兩根等長的立柱AB、CD(均與地面垂直),并在立柱之間懸掛一根繩子.由于掛的衣服比較多,繩子的形狀近似成了拋物線y=ax2﹣0.8x+c,如圖1,已知立柱AB=CD=2.6米,BD=8米.
(1)求繩子最低點離地面的距離;
(2)為了防止衣服碰到地面,小華在離AB為3米的位置處用一根垂直于地面的立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.6米,求MN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年3月,我市某中學舉行了“愛我中國朗誦比賽”活動,根據(jù)學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據(jù)圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學生共有人,并把條形統(tǒng)計圖補充完整理;
(2)扇形統(tǒng)計圖中,m= , n=;C等級對應扇形有圓心角為度;
(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】鹽城市“創(chuàng)建文明城市”活動如火如荼的展開.某中學為了搞好“創(chuàng)建文明城市”活動的宣傳,校學生會就本校學生對鹽城“市情市況”的了解程度進行了一次調(diào)查測試.經(jīng)過對測試成績的分析,得到如下圖所示的兩幅不完整的統(tǒng)計圖(A:59分及以下;B:60﹣69分;C:70﹣79分;D:80﹣89分;E:90﹣100分).請你根據(jù)圖中提供的信息解答以下問題:
(1)求該校共有多少名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,計算出“60﹣69分”部分所對應的圓心角的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com