【題目】(1)如圖①,在△ABC,BAC=90AB=AC,直線m經(jīng)過點ABD⊥直線m,CE⊥直線m,垂足分別為點D.E證明:DE=BD+CE.

(2)如圖②,(1)中的條件改為:在△ABC中,AB=AC,D. A.E三點都在直線m上,并且有∠BDA=AEC=BAC,請問結(jié)論DE=BD+CE是否成立,若成立,請你給證明:若不存在,請說明理由。

(3)應(yīng)用:如圖③,在△ABC中,∠BAC是鈍角,AB=AC,∠BAD>CAED. A.E三點都在直線m上,且∠BDA=AEC=BAC,只出現(xiàn)mBC的延長線交于點F,若BD=5,DE=7EF=2CE,求△ABD與△ABF的面積之比。

【答案】1)見解析;(2)成立,理由見解析;(329

【解析】

1)證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)證明即可;

2)根據(jù)三角形內(nèi)角和定理證明∠CAE=ABD,證明△ABD≌△CAE,根據(jù)全等三角形的性質(zhì)證明即可;

3)根據(jù)(2)的結(jié)論求出AEAD、EF,根據(jù)三角形的面積公式計算即可.

1)證明:∵∠BAC=90°

∴∠BAD+CAE=90°

CE⊥直線m

∴∠ACE+CAE=90°

∴∠BAD=ACE

在△ABD和△CAE

∴△ABD≌△CAEAAS

BD=AEAD=CE

DE=AE+AD=BD+CE

2)結(jié)論DE=BD+CE成立

證明:∠CAE=180°﹣∠BAC﹣∠BAD,

ABD=180°﹣∠ADB﹣∠BAD,

∴∠CAE=ABD

在△ABD和△CAE

∴△ABD≌△CAEAAS

BD=AE,AD=CE

DE= AE+ AD =BD+CE

3)由(2)得,△ABD≌△CAE

AE=BD=5,

AD=DEAE=2

EF=2CE=4

∴△ABD與△ABF的面積之比=ADAF=29

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖:作點A關(guān)于直線l的對稱點A'.

已知:直線l和l外一點A.

求作:點A關(guān)于l的對稱點A'.

作法:①在l上任取一點P,以點P為圓心,PA長為半徑作孤,交l于點B;②以點B為圓心,AB長為半徑作弧,交弧AB于點A'. 點A'就是所求作的對稱點.

由步驟①,得________

由步驟②,得________

將橫線上的內(nèi)容填寫完整,并說明點A與A'關(guān)于直線l對稱的理由________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣某包裝生產(chǎn)企業(yè)承接了一批上海世博會的禮品盒制作業(yè)務(wù),為了確保質(zhì)量,該企業(yè)進(jìn)行試生產(chǎn).他們購得規(guī)格是的標(biāo)準(zhǔn)板材作為原材料,每張標(biāo)準(zhǔn)板材再按照裁法一或裁法二裁下型與型兩種板材.如圖甲所示.(單位

1)列出方程(組),求出圖甲中的值;

2)在試生產(chǎn)階段,若將625張標(biāo)準(zhǔn)板材用裁法一裁剪,125張標(biāo)準(zhǔn)板材用裁法二裁剪,再將得到的型與型板材做側(cè)面和底面,剛好可以做成圖乙的豎式與橫式兩種無蓋禮品盒.求可以做豎式與橫式兩種無蓋禮品盒各多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“品中華詩詞,尋文化自信”.某校組織全校1000名學(xué)生舉辦了第二屆“中華詩詞大賽”的初賽,從中抽取部分學(xué)生的成績統(tǒng)計后,繪制了如下不完整的頻數(shù)分布統(tǒng)計表與頻數(shù)分布直方圖.

頻數(shù)分布統(tǒng)計表

組別

成績(分)

人數(shù)

百分比

8

20%

16

30%

4

10%

頻數(shù)分布直方圖

請觀察圖表,解答下列問題:

1)表中__________,__________;

2)補(bǔ)全頻數(shù)分布直方圖;

3)如果成績達(dá)到9090分以上者為優(yōu)秀,可推薦參加決賽,那么請你估計該校進(jìn)入決賽的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB=AC,AE=AF,連結(jié)BF,CE,交于O,連結(jié)AO.求證:

1B=∠C

2AO平分BAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果mx+n=0,其中m、n為有理數(shù),x為無理數(shù),那么m=0n=0.

1)如果,其中a、b為有理數(shù),那么a= ,b= .

2)如果,其中ab為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,△ABC中,AB=AC,AB的垂直平分線交邊ABD點,交邊ACE點,若△ABC△EBC的周長分別是40cm,24cm,則AB= cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)①如圖①的內(nèi)角的平分線與內(nèi)角的平分線相交于點,請?zhí)骄?/span>的關(guān)系,并說明理由.

②如圖②,的內(nèi)角的平分線與外角的平分線相交于點,請?zhí)骄?/span>的關(guān)系,并說明理由.

2)如圖③④,四邊形中,設(shè),, 為四邊形的內(nèi)角與外角的平分線所在直線相交而行成的銳角.請利用(1)中的結(jié)論完成下列問題:

①如圖③,求的度數(shù).(用 的代數(shù)式表示)

②如圖④,將四邊形沿著直線翻折得到四邊形延長線上一點,連接的角平分線交于點,求的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】盒中有x枚黑棋和y枚白棋,這些棋除顏色外無其他差別.

(1)從盒中隨機(jī)取出一枚棋子,如果它是黑棋的概率是,寫出表示xy關(guān)系的表達(dá)式.

(2)往盒中再放進(jìn)10枚黑棋,取得黑棋的概率變?yōu)?/span>,求xy的值.

查看答案和解析>>

同步練習(xí)冊答案