【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于,兩點(點在點的左側(cè)),與軸交于點,對稱軸與軸交于點,點在拋物線上.

1)求直線的解析式.

2)點為直線下方拋物線上的一點,連接,.當(dāng)的面積最大時,連接,,點是線段的中點,點是線段上的一點,點是線段上的一點,求的最小值.

3)點是線段的中點,將拋物線軸正方向平移得到新拋物線經(jīng)過點,的頂點為點,在新拋物線的對稱軸上,是否存在點,使得為等腰三角形?若存在,直接寫出點的坐標(biāo);若不存在,請說明理由.

【答案】1;(23;(3)存在,點Q的坐標(biāo)為.

【解析】

1)求出點A、BE的坐標(biāo),設(shè)直線的解析式為,將點A和點E的坐標(biāo)代入即可;

2)先求出直線CE解析式,過點P軸,交CE與點F,設(shè)點P的坐標(biāo)為,則點F,從而可表示出△EPC的面積,利用二次函數(shù)性質(zhì)可求出x的值,從而得到點P的坐標(biāo),作點K關(guān)于CDCP的對稱點GH,連接G、HCDCPN、M,當(dāng)點O、NM、H在一條直線上時,KM+MN+NK有最小值,最小值=GH,利用勾股定理求出GH即可;

(3)由平移后的拋物線經(jīng)過點D,可得到點F的坐標(biāo),利用中點坐標(biāo)公式可求得點G的坐標(biāo),然后分為三種情況討論求解即可.

解:(1

當(dāng)時,

設(shè)直線的解析式為,將點A和點E的坐標(biāo)代入得

解得

所以直線的解析式為.

2)設(shè)直線CE的解析式為,將點E的坐標(biāo)代入得:

解得:

直線CE的解析式為

如圖,過點P軸,交CE與點F

設(shè)點P的坐標(biāo)為,則點F

FP

∴當(dāng)時,EPC的面積最大,

此時

如圖2所示:作點K關(guān)于CDCP的對稱點GH,連接G、HCDCPN、M

KCB的中點,

OD1,OC3

KBC的中點,∠OCB60°

O與點K關(guān)于CD對稱

G與點O重合

∴點G(00)

H與點K關(guān)于CP對稱

∴點H的坐標(biāo)為

當(dāng)點O、NM、H在條直線上時,KM+MN+NK有最小值,最小值=GH

的最小值為3.

3)如圖

經(jīng)過點D,的頂點為點F

∴點

GCE的中點,

當(dāng)FGFQ時,點

當(dāng)GFGQ時,點F與點關(guān)于直線對稱

當(dāng)QGQF時,設(shè)點的坐標(biāo)為

由兩點間的距離公式可得:,解得

的坐標(biāo)為

綜上所述,點Q的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABC中,∠ABC90°,BABC,將BC繞點B順時針旋轉(zhuǎn)θ0°<θ90°),得到BP,連結(jié)CP,過點AAHCPCP的延長線于點H,連結(jié)AP,則∠PAH的度數(shù)(  )

A.隨著θ的增大而增大

B.隨著θ的增大而減小

C.不變

D.隨著θ的增大,先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1A型服裝計酬16元,加工1B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1A型服裝和2B型服裝需4小時,加工3A型服裝和1B型服裝需7小時.(工人月工資=底薪+計件工資)

(1)一名熟練工加工1A型服裝和1B型服裝各需要多少小時?

(2)一段時間后,公司規(guī)定:每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB兩地相距200千米.早上800貨車甲從A地出發(fā)將一批物資運往B地,行駛一段路程后出現(xiàn)故障,即刻停車與B地聯(lián)系.B地收到消息后立即派貨車乙從B地出發(fā)去接運甲車上的物資.貨車乙遇到甲后,用了18分鐘將物資從貨車甲搬運到貨車乙上,隨后開往B地.兩輛貨車離開各自出發(fā)地的路程y(千米)與時間x(小時)的函數(shù)關(guān)系如圖所示.(通話等其他時間忽略不計)

1)求貨車乙在遇到貨車甲前,它離開出發(fā)地的路程y關(guān)于x的函數(shù)表達(dá)式.

2)因?qū)嶋H需要,要求貨車乙到達(dá)B地的時間比貨車甲按原來的速度正常到達(dá)B地的時間最多晚1個小時,問貨車乙返回B地的速度至少為每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天早晨,小玲從家出發(fā)勻速步行到學(xué)校,小玲出發(fā)一段時間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學(xué)習(xí)用品,于是立即下樓騎自行車,沿小玲行進(jìn)的路線,勻速去追小玲,媽媽追上小玲將學(xué)習(xí)用品交給小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的一半,小玲繼續(xù)以原速度步行前往學(xué)校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時間x(分)之間的關(guān)系如圖所示(小玲和媽媽上、下樓以及媽媽交學(xué)習(xí)用品給小玲耽擱的時間忽略不計).當(dāng)媽媽剛回到家時,小玲離學(xué)校的距離為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB的中點,連接DE、CE.

(1)求證:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線的拋物線經(jīng)過,兩點,拋物線與軸的另一交點為

1)求拋物線的解析式;

2)若點為第一象限內(nèi)拋物線上一點,設(shè)四邊形的面積為,求的最大值;

3)若是線段上一動點,在軸上是否存在這樣的點,使為等腰三角形且為直角三角形?若存在,求出點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

1)如圖①,在等腰RtABC中,斜邊AC4,點DAC上一點,連接BD,則BD的最小值為   ;

問題探究

2)如圖②,在ABC中,ABAC5,BC6,點MBC上一點,且BM4,點P是邊AB上一動點,連接PM,將BPM沿PM翻折得到DPM,點D與點B對應(yīng),連接AD,求AD的最小值;

問題解決

3)如圖③,四邊形ABCD是規(guī)劃中的休閑廣場示意圖,其中∠BAD=∠ADC135°,∠DCB30°,AD2kmAB3km,點MBC上一點,MC4km.現(xiàn)計劃在四邊形ABCD內(nèi)選取一點P,把DCP建成商業(yè)活動區(qū),其余部分建成景觀綠化區(qū).為方便進(jìn)入商業(yè)區(qū),需修建小路BP、MP,從實用和美觀的角度,要求滿足∠PMB=∠ABP,且景觀綠化區(qū)面積足夠大,即DCP區(qū)域面積盡可能小.則在四邊形ABCD內(nèi)是否存在這樣的點P?若存在,請求出DCP面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[閱讀理解]

構(gòu)造“平行八字型”全等三角形模型是證明線段相等的一種方法,我們常用這種方法證明線段的中點問題.

例如:如圖,D是△ABCAB上一點,EAC的中點,過點CCFAB,交DE的延長線于點F,則易證E是線段DF的中點.

[經(jīng)驗運用]

請運用上述閱讀材料中所積累的經(jīng)驗和方法解決下列問題.

1)如圖1,在正方形ABCD中,點EAB上,點FBC的延長線上,且滿足AECF,連接EFAC于點G

求證:GEF的中點;

CGBE;

[拓展延伸]

2)如圖2,在矩形ABCD中,AB2BC,點EAB上,點FBC的延長線上,且滿足AE2CF,連接EFAC于點G.探究BECG之間的數(shù)量關(guān)系,并說明理由;

3)如圖3,若點EBA的延長線上,點F在線段BC上,DFAC于點H,BF2,CF1,( 2)中的其它條件不變,請直接寫出GH的長.

查看答案和解析>>

同步練習(xí)冊答案