【題目】如圖,AB是⊙O的直徑,BD,CD分別是過⊙O上點(diǎn)B,C的切線,且∠BDC=120°,連接AC.
(1)求∠A的度數(shù);
(2)若點(diǎn)D到BC的距離為2,那么⊙O的半徑是多少?
【答案】(1)30°;(2)4
【解析】
試題分析:(1)首先連接OC,由BD,CD分別是過⊙O上點(diǎn)B,C的切線,可求得∠BOC的度數(shù),然后由圓周角定理,求得答案;(2)首先求得∠DCB與∠DBC的度數(shù),然后過點(diǎn)D作DE⊥BC,垂足為E,則DE=2,即可求得BE的長,繼而求得BC的長,然后由(1)可知△OBC為等邊三角形,即可求得答案.
試題解析:(1)連接OC, ∵BD,CD分別是過⊙O上點(diǎn)B,C的切線, ∴OC⊥CD,OB⊥BD,
∴∠OCD=∠OBD=90°, ∵∠BDC=120°, ∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=60°,
∴∠A=∠BOC=30°;
(2)∵BD,CD分別是過⊙O上點(diǎn)B,C的切線, ∴DC=DB,
∴∠DCB=∠DBC=(180°﹣120°)=30°, 過點(diǎn)D作DE⊥BC,垂足為E,則DE=2, ∵∠DBC=30°,
∴BD=2DE=4, 在直角△DEB中,BE=2, ∴BC=2BE=4,
由(1)可知△OBC為等邊三角形, ∴OB=BC=4, ∴⊙O的半徑是4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點(diǎn)A、B、O為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點(diǎn),判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中,△ABC的頂點(diǎn)均在格點(diǎn)上,在所給直角坐標(biāo)系中解答下列問題:
(1)分別寫出點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(2)作出△ABC關(guān)于y軸對稱的△A1B1 C1,再把△A1B1 C1向上平移2個(gè)單位長度得到△A2B2 C2;寫出點(diǎn)A2、B2、C2三點(diǎn)的坐標(biāo);
(3)請求出△A2B2 C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù),-2 ,-2,3,-2,x,-1,它門的平均數(shù)為0.5,則它們的中位數(shù)是 _______________,眾數(shù)是___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名運(yùn)動員,在相同情況下各射擊10次.兩名的平均數(shù)都是8, 方差分別為4.2.2,則成績較好的是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天,小明和小玲玩紙片拼圖游戲,發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些長方形來解釋某些等式.比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2 .
(1)圖③可以解釋為等式: .
(2)要拼出一個(gè)長為a+3b,寬為2a+b的長方形,需要如圖所示的塊,塊,塊.
(3)如圖④,大正方形的邊長為m,小正方形的邊長為n,若用x、y表示四個(gè)矩形的兩邊長(x>y),觀察圖案,指出以下關(guān)系式:
(1)xy=(2)x+y=m(3)x2﹣y2=mn(4)
其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com