【題目】已知:如圖,在Rt△ABC中,∠C=90°,Rt△ABC的內切圓⊙O,切點分別為點D、E、F,
(1)若AC=3,BC=4,求△ABC的內切圓半徑;
(2)當AD=5,BD=7時,求△ABC的面積;
(3)當AD=m,BD=n時,直接寫出求△ABC的面積(用含m,n的式子表示)為 .
【答案】(1)1;(2)35;(3)mn
【解析】
(1)連接OD、OE、OF,如圖,設⊙O的半徑為r,利用勾股定理計算出AB=5,利用切線的性質和切線長定理得到OE⊥AC,OF⊥BC,CE=CF,AE=AD,BF=BD,則四邊形CFOE為正方形,所以CE=CF=OE=r,從而得3﹣r+4﹣r=5,然后求出r即可;
(2)設⊙O的半徑為r,利用(1)中的結論得到AE=AD=5,BF=BD=7,AC=5+r,BC=7+r,再利用勾股定理得到(5+r)2+(7+r)2=(5+7)2,求出r得到AC=﹣1,BC=+1,然后根據三角形面積公式求解;
(3)設⊙O的半徑為r,與(2)一樣得到AE=AD=m,BF=BD=n,AC=m+r,BC=n+r,利用勾股定理得到(m+r)2+(n+r)2=(m+n)2,解得r= 或r=(舍去),所以AC=),BC=,然后利用勾股定理計算三角形的面積即可.
解:(1)連接OD、OE、OF,如圖,設⊙O的半徑為r,
在Rt△ABC中,AB==5,
∵Rt△ABC的內切圓⊙O,切點分別為點D、E、F,
∴OE⊥AC,OF⊥BC,CE=CF,AE=AD,BF=BD,
易得四邊形CFOE為正方形,
∴CE=CF=OE=r,
∴AD=AE=3﹣r,BD=BF=4﹣r,
∴3﹣r+4﹣r=5,解得r=1,
即△ABC的內切圓半徑為1;
(2)設⊙O的半徑為r,
由(1)得AE=AD=5,BF=BD=7,
∴AC=5+r,BC=7+r,
在Rt△ABC中,(5+r)2+(7+r)2=(5+7)2,解得r=﹣6或r=﹣6(舍去),
∴AC=﹣6+5=﹣1,BC=﹣6+7=+1,
∴S△ABC=(﹣1)(+1)=35;
(3)設⊙O的半徑為r,
由(1)得AE=AD=m,BF=BD=n,
∴AC=m+r,BC=n+r,
在Rt△ABC中,(m+r)2+(n+r)2=(m+n)2,解得r=或r=(舍去),
∴AC=,BC=,
∴S△ABC=×AC×BC==.
故答案為mn.
科目:初中數學 來源: 題型:
【題目】《孫子算經》是唐初作為“算學”教科書的著名的《算經十書》之一,共三卷,上卷敘述算籌記數的制度和乘除法則,中卷舉例說明籌算分數法和開平方法,都是了解中國古代籌算的重要資料,下卷收集了一些算術難題,“雞兔同籠”便是其中一題.下卷中還有一題,記載為:“今有甲乙二人,持錢各不知數.甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八.問甲、乙二人持錢各幾何?”意思是:“甲、乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文.如果乙得到甲所有錢的,那么乙也共有錢48文.問甲、乙二人原來各有多少錢?”設甲原有錢x文,乙原有錢y文,可得方程組( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點A(﹣3,0),B(1,0),交y軸正半軸于點D,拋物線頂點為C.下列結論
①2a﹣b=0;
②a+b+c=0;
③當m≠﹣1時,a﹣b>am2+bm;
④當△ABC是等腰直角三角形時,a=;
⑤若D(0,3),則拋物線的對稱軸直線x=﹣1上的動點P與B、D兩點圍成的△PBD周長最小值為3,其中,正確的個數為( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ABC=90°,
(1)如圖1,分別過A,C兩點作經過點B的直線的垂線,垂足分別為M、N,求證:△ABM~△BCN;
(2)如圖2,P是邊BC上一點,∠BAP=∠C,PM⊥PA交AC于點M,=,求的值;
(3)如圖3,D是邊CA延長線上一點,AE=AB,∠DEB=90°,AD:BC:AC=2:3:5,求的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程 (m-1)x-mx+1=0。
(1)證明:不論m為何值時,方程總有實數根;
(2)若m為整數,當m為何值時,方程有兩個不相等的整數根。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4正方形ABCD中,以AB為腰向正方形內部作等腰△ABE,點G在CD上,且CG=3DG.連接BG并延長,與AE交于點F,與AD延長線交于點H.連接DE交BH于點K.若AE2=BFBH,則S△CDE=__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AD⊥BC,OE⊥BC,若∠BAC=45°.
(1)求證:OE=BC;
(2)將△ACD沿AC折疊為△ACF,將△ABD沿AB折疊為△ABG,延長FC和GB相交于點H,若BD=6,CD=4,求AD的長;
(3)作OM⊥AB于M,ON⊥AC于N,在(2)的條件下求.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場將進貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經調查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規(guī)定此臺燈售價不得超過60元,為了實現銷售這種臺燈平均每月10000元的銷售利潤,售價應定為多少元?這時售出臺燈多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com