已知直線y=
12
x+b
與x軸交于點A(-4,0),與y軸交于點B.
(1)求b的值;
(2)把△AOB繞原點O順時針旋轉(zhuǎn)90°后,點A落在y軸的A′處,點B若在x軸的B′處.
①求直線A′B′的函數(shù)關(guān)系式;
②設(shè)直線AB與直線A′B′交于點C,矩形PQMN是△AB′C的內(nèi)接矩形,其中點P,Q在線段AB′上,點M在線段B′C上,點N在線段AC上.若矩形PQMN的兩條鄰邊的比為1:2,試求矩形PQMN的周長.
分析:(1)點A在直線上,直接代入即可得b;
(2)①根據(jù)旋轉(zhuǎn)性質(zhì)確定旋轉(zhuǎn)后A′B′坐標,即可得解析式;
②根據(jù)幾何圖形,確定P、Q、M、N四點的關(guān)系即可確定周長.
解答:精英家教網(wǎng)解:(1)由題意得
把A(-4,0)代入y=
1
2
x+b
,
1
2
×(-4)+b=0,b=2
;(3分)

(2)①由(1)得:y=
1
2
x+2
,
令x=0,得y=2,
∴B(0,2)(4分)
由旋轉(zhuǎn)性質(zhì)可知OA'=OA=4,OB'=OB=2
∴A'(0,4),B'(2,0)(5分)
設(shè)直線A'B'的解析式為y=ax+b,
把A'、B'分別代入得:
b′=4
2a+b′=0
,解得
a=-2
b′=4

∴直線A'B'的解析式為y=-2x+4;(7分)
②∵點N在AC上
∴可設(shè)N(x,
1
2
x+2
)(-4<x<0)
∵四邊形PQMN為矩形
∴NP=MQ=
1
2
x+2
(8分)
(。┊擯N:PQ=1:2時
PQ=2PN=2(
1
2
x+2)=x+4

∴Q(x+4+x,0)
∴M(2x+4,
1
2
x+2

∵點M在B'C上
-2(2x+4)+4=
1
2
x+2

解得x=-
4
3

此時,PQ=
8
3

∴矩形PQMN的周長為2(
4
3
+
8
3
)=8
(10分)
(ⅱ)當PN:PQ=2:1時
PQ=
1
2
PN=
1
2
(
1
2
x+2)=
1
4
x+1

∴Q(
1
4
x+1+x
,0)
M(
5
4
x+1
,
1
2
x+2

∵點M在B'C上
-2(
5
4
x+1)+4=
1
2
x+2

解得x=0
此時PN=2,PQ=1
∴矩形PQMN的周長為2(2+1)=6.(12分)
綜上所述,當PN:PQ=1:2時,矩形PQMN的周長為8.
當PQ:PN=1:2時,矩形PQMN的周長為6.(13分)
點評:本題考查待定系數(shù)法求一次函數(shù)及其坐標特征,并綜合幾何旋轉(zhuǎn)性質(zhì)應(yīng)用,是個綜合性比較高的題,要求要熟練掌握函數(shù)圖象性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知直線y=
1
2
x+1
,請在平面直角坐標系中畫出直線y=
1
2
x+1
繞點A(1,0)順時針旋轉(zhuǎn)90°后的圖形,并直接寫出該圖形的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線y=
1
2
x+1與y軸交于點A,與x軸交于點D,拋物線y=
1
2
x2+bx+c與直線交于A、精英家教網(wǎng)E兩點,與x軸交于B、C兩點,且B點坐標為(1,0).
(1)求該拋物線的解析式;
(2)動點P在x軸上移動,當△PAE是直角三角形時,求點P的坐標P;
(3)在拋物線的對稱軸上找一點M,使|AM-MC|的值最大,求出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線y=
1
2
x
與雙曲線y=
k
x
(k>0)
交于A,B兩點,且點A的橫坐標為4.
(1)求k的值;
(2)若雙曲線y=
k
x
(k>0)
上一點C的縱坐標為8,求△AOC的面積;
(3)另一條直線y=2x交雙曲線y=
k
x
(k>0)
于P,Q兩點(P點在第一象限),若由點P為頂點組成的四邊形AQBP,求四邊形AQBP的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知直線y=
1
2
x+
k
2
-3
y=-
1
3
x+
4k
3
+
1
3
的交點在第四象限.
(1)求k的取值范圍;
(2)若k為非負整數(shù),△PAO是以O(shè)A為底的等腰三角形,點A的坐標為(2,0),點P在直線y=
1
2
x+
k
2
-3
上,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•梧州模擬)如圖,已知直線y=-
1
2
x+1
交坐標軸于A,B 兩點,以線段AB為邊向上作正方形ABCD,過點A,D,C的拋物線與直線另一個交點為E.
(1)請直接寫出點C,D的坐標; 
(2)求拋物線的解析式;
(3)若正方形以每秒
5
個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍.

查看答案和解析>>

同步練習冊答案