【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.
(1)求第二次傳球后球回到甲手里的概率.(請(qǐng)用“畫樹狀圖”或“列表”等方式給出分析過程)
(2)如果甲跟另外n(n≥2)個(gè)人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是
【答案】
(1)
解:畫樹狀圖:
共有9種等可能的結(jié)果,其中符合要求的結(jié)果有3種,
∴P(第2次傳球后球回到甲手里)==.
(2)
【解析】(2)第三步傳的結(jié)果是n3 , 傳給甲的結(jié)果是n(n﹣1),
第三次傳球后球回到甲手里的概率是=,
所以答案是:.
【考點(diǎn)精析】本題主要考查了列表法與樹狀圖法的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=ax+b與雙曲線y=(x>0)交于A(x1 , y1),B(x2 , y2)兩點(diǎn)(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點(diǎn)C.
(1)若A,B兩點(diǎn)坐標(biāo)分別為(1,3),(3,y2),求點(diǎn)P的坐標(biāo).
(2)若b=y1+1,點(diǎn)P的坐標(biāo)為(6,0),且AB=BP,求A,B兩點(diǎn)的坐標(biāo).
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,以對(duì)角線AC為邊作第二個(gè)正方形,再以對(duì)角線AE為邊作第三個(gè)正方形AEGH,如此下去,第n個(gè)正方形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,觀測點(diǎn)A、旗桿DE的底端D、某樓房CB的底端C三點(diǎn)在一條直線上,從點(diǎn)A處測得樓頂端B的仰角為22°,此時(shí)點(diǎn)E恰好在AB上,從點(diǎn)D處測得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場在“五一”期間舉行促銷活動(dòng),根據(jù)顧客按商品標(biāo)價(jià)一次性購物總額,規(guī)定相應(yīng)的優(yōu)惠方法:①如果不超過500元,則不予優(yōu)惠;②如果超過500元,但不超過800元,則按購物總額給予8折優(yōu)惠;③如果超過800元,則其中800元給予8折優(yōu)惠,超過800元的部分給予6折優(yōu)惠.促銷期間,小紅和她母親分別看中一件商品,若各自單獨(dú)付款,則應(yīng)分別付款480元和520元;若合并付款,則她們總共只需付款 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,且OE=OD,則AP的長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x﹣4的圖象與x軸、y軸分別相交于點(diǎn)A、B,點(diǎn)P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為d1、d2 .
(1)當(dāng)P為線段AB的中點(diǎn)時(shí),求d1+d2的值。
(2)直接寫出d1+d2的范圍,并求當(dāng)d1+d2=3時(shí)點(diǎn)P的坐標(biāo)。
(3)若在線段AB上存在無數(shù)個(gè)P點(diǎn),使d1+ad2=4(a為常數(shù)),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD內(nèi)接于⊙O,如圖所示,在劣弧 上取一點(diǎn)E,連接DE、BE,過點(diǎn)D作DF∥BE交⊙O于點(diǎn)F,連接BF、AF,且AF與DE相交于點(diǎn)G,求證:
(1)四邊形EBFD是矩形;
(2)DG=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭議的情境:
請(qǐng)根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請(qǐng)你判斷誰的說法正確,為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com