【題目】ABC中,已知ABBCCA4 cm,點(diǎn)P、Q分別從BC兩點(diǎn)同時(shí)出發(fā),其中點(diǎn)P沿BC向終點(diǎn)C運(yùn)動(dòng),速度為1 cm/s;點(diǎn)Q沿CA、AB向終點(diǎn)B運(yùn)動(dòng),速度為2 cm/s,設(shè)它們運(yùn)動(dòng)的時(shí)間為x(s),當(dāng)x__________,BPQ是直角三角形.

【答案】2或

【解析】

t表示出BP、CQBQ,然后分兩種情況:①∠BPQ=90°,②∠BQP=90°進(jìn)行討論即可得解.

分析題意可知,只有點(diǎn)Q運(yùn)動(dòng)到AB上時(shí),△BPQ才有可能是直角三角形,根據(jù)題意,得B、C兩點(diǎn)運(yùn)動(dòng)的距離BPtcm,CQ2tcm BQ(82t) cm,

BPQ是直角三角形,則∠BPQ90°或∠BQP90°,

①當(dāng)∠BPQ90°時(shí),

QA點(diǎn),CQCA4 cm,

4÷22(s);

②當(dāng)∠BQP90°時(shí),∵∠B60°,

∴∠BPQ90°60°30°

BQBP,

82tt,

解得t

故當(dāng)t2秒時(shí),BPQ是直角三角形.

故答案為:2 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直接寫(xiě)出結(jié)果:(1)-11_____;(237_____;

3_____;(4)-7×0.5_____;(5(2)3_____;

6(1)2n_______n為正整數(shù));(74x0的解是_____;

8x4 的解是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有330臺(tái)機(jī)器要運(yùn)送到外地,計(jì)劃租用甲、乙兩種貨車.已知甲種貨車每輛租金400元,乙種貨車每輛租金280元,若租用3輛甲種貨車和2輛乙種貨車,可運(yùn)送195臺(tái)機(jī)器;若租用4輛甲種貨車和1輛乙種貨車,可運(yùn)送210臺(tái)機(jī)器;
(1)求每輛甲種貨車和乙種貨車能運(yùn)送的機(jī)器數(shù)量;
(2)請(qǐng)給出一次性將機(jī)器運(yùn)送到目的地的最節(jié)省費(fèi)用的租車方案,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點(diǎn),則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐵路上AB兩點(diǎn)相距25km,CD為兩村莊,DAABACBABB,已知DA15km,CB10km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得C、D兩村到E站的距離相等,則E站應(yīng)建在距A站多少千米處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角墻角AOB(OA⊥OB,且OA、OB長(zhǎng)度不限)中,要砌20m長(zhǎng)的墻,與直角墻角AOB圍成地面為矩形的儲(chǔ)倉(cāng),且地面矩形AOBC的面積為96m2
(1)求這地面矩形的長(zhǎng);
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價(jià)分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲(chǔ)倉(cāng)的矩形地面(不計(jì)縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDABC的中線,CEABC的高,若AC9BC12,AB15.

(1)CD的長(zhǎng).

(2)DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將三角形ABC向右平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度請(qǐng)回答下列問(wèn)題:

1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1   ,B1   ,C1   ;

2)畫(huà)出平移后三角形A1B1C1;

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,下列條件中,能判斷直線L1L2的是( )

A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4

查看答案和解析>>

同步練習(xí)冊(cè)答案