【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC,BC,PB:PC=1:2.

(1)求證:AC平分∠BAD;
(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若AD=3,求△ABC的面積.

【答案】
(1)

證明:連接OC,

∵PE是⊙O的切線,

∴OC⊥PE,

∵AE⊥PE,

∴OC∥AE,

∴∠DAC=∠OCA,

∵OA=OC,

∴∠OCA=∠OAC,

∴∠DAC=∠OAC,

∴AC平分∠BAD;


(2)

解:線段PB,AB之間的數(shù)量關(guān)系為:AB=3PB.

理由:∵AB是⊙O的直徑,

∴∠ACB=90°,

∴∠BAC+∠ABC=90°,

∵OB=OC,

∴∠OCB=∠ABC,

∵∠PCB+∠OCB=90°,

∴∠PCB=∠PAC,

∵∠P是公共角,

∴△PCB∽△PAC,

,

∴PC2=PBPA,

∵PB:PC=1:2,

∴PC=2PB,

∴PA=4PB,

∴AB=3PB;


(3)

解:過點O作OH⊥AD于點H,則AH=AD=,四邊形OCEH是矩形,

∴OC=HE,

∴AE=+OC,

∵OC∥AE,

∴△PCO∽△PEA,

,

∵AB=3PB,AB=2OB,

∴OB=PB,

=,

∴OC=,

∴AB=5,

∵△PBC∽△PCA,

∴AC=2BC,

在Rt△ABC中,AC2+BC2=AB2

∴(2BC)2+BC2=52,

∴BC=,

∴AC=,

∴SABC=ACBC=5.


【解析】(1)首先連接OC,由PE是⊙O的切線,AE和過點C的切線互相垂直,可證得OC∥AE,又由OA=OC,易證得∠DAC=∠OAC,即可得AC平分∠BAD;
(2)由AB是⊙O的直徑,PE是切線,可證得∠PCB=∠PAC,即可證得△PCB∽△PAC,然后由相似三角形的對應(yīng)邊成比例與PB:PC=1:2,即可求得答案;
(3)首先過點O作OH⊥AD于點H,則AH=AD=,四邊形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的對應(yīng)邊成比例,求得OC的長,再由△PBC∽△PCA,證得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2 , 可得(2BC)2+BC2=52 , 即可求得BC的長,繼而求得答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點P是線段AB上與點A不重合的一點,且AP<PB.AP繞點A逆時針旋轉(zhuǎn)角α(0°<α≤90°)得到AP1 , BP繞點B順時針也旋轉(zhuǎn)角α得到BP2 , 連接PP1、PP2

(1)如圖1,當α=90°時,求∠P1PP2的度數(shù);
(2)如圖2,當點P2在AP1的延長線上時,求證:△P2P1P∽△P2PA;
(3)如圖3,過BP的中點E作l1⊥BP,過BP2的中點F作l2⊥BP2 , l1與l2交于點Q,連接PQ,求證:P1P⊥PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓形鐵片與直角三角尺、直尺緊靠在一起平放在桌面上.已知鐵片的圓心為O,三角尺的直角頂點C落在直尺的10cm處,鐵片與直尺的唯一公共點A落在直尺的14cm處,鐵片與三角尺的唯一公共點為B,下列說法錯誤的是( 。

A.圓形鐵片的半徑是4cm
B.四邊形AOBC為正方形
C.弧AB的長度為4πcm
D.扇形OAB的面積是4πcm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,P是BA延長線上一點,PC切⊙O于點C,CG是⊙O的弦,CG⊥AB,垂足為D.

(1)求證:∠PCA=∠ABC;
(2)過點A作AE∥PC,交⊙O于點E,交CD于點F,連接BE.若sin∠P=,CF=5,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=ax+b的圖象相交于點A(1,4)和點B(n,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當一次函數(shù)的值小于反比例函數(shù)的值時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)

(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條合理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節(jié)約用水量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,C城市在A城市正東方向,現(xiàn)計劃在A、C兩城市間修建一條高速公路(即線段AC),經(jīng)測量,森林保護區(qū)的中心P在A城市的北偏東60°方向上,在線段AC上距A城市120km的B處測得P在北偏東30°方向上,已知森林保護區(qū)是以點P為圓心,100km為半徑的圓形區(qū)域,請問計劃修建的這條高速公路是否穿越保護區(qū),為什么?(參考數(shù)據(jù): ≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,O為原點,A(0,4),點B在直線y=kx+6(k>0)上,若以O(shè)、A、B為頂點所作的直角三角形有且只有三個時,k的值為( )
A.
B.
C.3
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】除夕夜,父母給自己的一雙兒女發(fā)壓歲錢,先每人發(fā)了200元,然后在三個紅包里面分別裝有標有100元,300元,500元的卡片,每個紅包和卡片除數(shù)字不同外,其余均相同,妹妹從三個紅包中隨機抽取了一個紅包,記錄數(shù)字后放回洗勻,哥哥再隨機抽取一個紅包,請用列表法或畫樹狀圖的方法,求父母給自己的一雙兒女發(fā)壓歲錢總和大于800元的概率.

查看答案和解析>>

同步練習冊答案