【題目】如圖,直線 分別交x軸、y軸于A、B兩點,已知點C坐標(biāo)為(6,0),若直線AB上存在點P,使∠OPC=90°,則m的取值范圍是________。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,DE⊥AB于點E,連接CE交AD于點H,則圖中的等腰三角形有( )
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點B(0,﹣3),直線l:y=﹣x+4上點A的橫坐標(biāo)為2,把射線BA繞點B順時針旋轉(zhuǎn)45°,與直線l交于點C,則點C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系內(nèi)的點A(m﹣3,2m﹣2)在第二象限,且m為整數(shù),B(3,1).
(1)求點A的坐標(biāo);
(2)點P是x軸上一動點,當(dāng)PA+PB最小時,求:①點P的坐標(biāo);②PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=6米,BC=8米,動點P以2米/秒得速度從A點出發(fā),沿AC向C移動,同時,動點Q以1米/秒得速度從C點出發(fā),沿CB向B移動。當(dāng)其中有一點到達終點時,他們都停止移動,設(shè)移動的時間為t秒。
(1)求△CPQ的面積S(平方米)關(guān)于時間t(秒)的函數(shù)關(guān)系式;
(2)在P、Q移動的過程中,當(dāng)△CPQ為等腰三角形時,求出t的值;
(3)以P為圓心,PA為半徑的圓與以Q為圓心,QC為半徑的圓相切時,求出t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動,他們的運動時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當(dāng)t=1時,△ACP與△BPQ是否全等,請說明理由
(2)判斷此時線段PC和線段PQ的關(guān)系,并說明理由。
(3)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變,設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,點E為AB邊上的一點,點F為對角線BD上的一點,且EF⊥AB.
(1)若四邊形ABCD為正方形.
①如圖1,請直接寫出AE與DF的數(shù)量關(guān)系 ;
②將△EBF繞點B逆時針旋轉(zhuǎn)到圖2所示的位置,連接AE,DF,猜想AE與DF的數(shù)量關(guān)系并說明理由.
(2)若四邊形ABCD為矩形,BC=mAB,其他條件都不變.
①如圖3,猜想AE與DF的數(shù)量關(guān)系并說明理由;
②將△EBF繞點B順時針旋轉(zhuǎn)α(0°<α<90°)得到△E′BF′,連接AE′,DF′,請在圖4中畫出草圖,并直接寫出AE′和DF′的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在平面直角坐標(biāo)系中,直線l1:yx5與x軸,y軸分別交于A.B兩點.直線l2:y4xb與l1交于點 D(-3,8)且與x軸,y軸分別交于C、E.
(1)求出點A坐標(biāo),直線l2的解析式;
(2)如圖2,點P為線段AD上一點(不含端點),連接CP,一動點Q從C出發(fā),沿線段CP 以每秒1個單位的速度運動到點P,再沿著線段PD以每秒個單位的速度運動到點D停止,求點Q在整個運動過程中所用最少時間與點P的坐標(biāo);
(3)如圖3,平面直角坐標(biāo)系中有一點G(m,2),使得SCEGSCEB,求點G的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com