【題目】已知拋物線x軸交于AB兩點(AB的左側(cè)),與y軸的正半軸交于點C,頂點為D,對稱軸與直線BC交于點E,且CE BE=1 2,連接BD,作CF//AB交拋物線對稱軸于點H,交BD于點F

1)寫出AB兩點的坐標(biāo):A , ),B ,

2)若四邊形BEHF的面積為,求拋物線的函數(shù)表達式;

3)在(2)的條件下,拋物線對稱軸上是否存在點M,使得∠CMF=CBF,若存在,請求出M點的坐標(biāo);若不存在,請說明理由.

【答案】1-1,0;3,0;(2y=x2 + 2x + 3 ;(3

【解析】

1)設(shè)對稱軸與x軸交于點G,根據(jù)CEBE=12得出OGBG=1:2,再結(jié)合對稱軸為直線x=1可得OGBG的長,從而得到點B坐標(biāo),再利用兩根之和得出點A坐標(biāo);

2)設(shè)拋物線表達式為,得到點C和點D的坐標(biāo),求出BDBC的表達式得到EF的坐標(biāo),再利用S四邊形BEFH=SBCF-SCHE得到方程求出a的值即可;

3)根據(jù)(2)得出B,C,F的坐標(biāo),設(shè)△BCF的外接圓圓心為點P,根據(jù)題意設(shè)點P坐標(biāo)為(m,m),由PC2=PF2,列出方程求出m值,再根據(jù)M在拋物線對稱軸上,∠CMF=CBF,設(shè)M1,n),根據(jù)PM2=PC2,列出方程求出n值即可得到結(jié)果.

解:(1)如圖,設(shè)對稱軸與x軸交于點G,

CEBE=12,DGy軸,

可得OGBG=1:2,

在拋物線中,

對稱軸為直線x=1

OG=1,BG=2,

B3,0),

則點A的橫坐標(biāo)為:2-3=-1

A-1,0),

故答案為:A-1,0), B3,0);

2)設(shè),

得:C0,﹣3a),D1,﹣4a),

B30),設(shè)BD的表達式為:y=kx+b,將BC代入,

,解得:,

BD的表達式為:,

CF//AB,

y=-3a,解得x=

,

同理可得:BC的表達式為:

x=1,則y=-2a,

E1-2a),

S四邊形BEFH=SBCF-SCHE==,

解得:a=1,

y=x2 + 2x + 3

3)由(2)可得:C0,3),B30),F,3),

OB=OC,

設(shè)△BCF的外接圓圓心為點P,可知點P到點B的距離等于點P到點C的距離,

可知點P在直線y=x上,

∴設(shè)點P坐標(biāo)為(m,m),

PC2=PF2,

,

解得:m=,

P,),

M在拋物線對稱軸上,∠CMF=CBF,

M在△BCF的外接圓上,

設(shè)M1,n),

則有PM2=PC2,

,

解得n=(舍)或,
.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y=(k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點,與y軸交于點C,過點B作BMx軸,垂足為M,BM=OM,OB=2,點A的縱坐標(biāo)為4.

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接MC,求四邊形MBOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機側(cè)立面夾角∠PCA=∠BDQ30°.當(dāng)雙翼收起時,可以通過閘機的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O.E,F(xiàn)AC上的兩點,并且AE=CF,連接DE,BF.

(1)求證:DOE≌△BOF;

(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)在,步行運動深受廣大健身愛好者的喜愛. 通過微信運動可以查詢微信好友當(dāng)天的行走步數(shù).實驗中學(xué)張老師根據(jù)該校名教師某日微信運動中的行走步數(shù),繪制成如下兩張統(tǒng)計表(不完整).

步數(shù)

頻數(shù)

頻率

0.2

19

0.38

0.3

4

2

0.04


(1)寫出左表中、的值,并補全條形統(tǒng)計圖;

(2)實驗中學(xué)所在的某縣有名教師,用張老師調(diào)查的樣本數(shù)據(jù)估計該縣當(dāng)天行走步數(shù)不少于步的教師有多少人?

(3)在該校名教師中,隨機選取當(dāng)天行走步數(shù)不少于步的名教師參加我運動,我健康的征文活動,求選中的名教師的行走步數(shù)都不小于步的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組正方形按如圖所示的方式放置,其中頂點B1y軸上,頂點C1E1,E2,C2E3,E4C3……x軸上,已知正方形A1B1C1D1的邊長為1,B1C1O60°,B1C1B2C2B3C3……,則正方形A2020B2020C2020D2020的邊長是(

A.()2017B.()2018C.()2019D.()2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】華聯(lián)超市用6000元購進甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)

進價(元/件)

22

30

售價(元/件)

29

40

(1)該商場購進甲、乙兩種商品各多少件?

(2)該超市將購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)圖象相交于兩點,其中點坐標(biāo)為軸于點,點在第二象限,軸,軸于點.

的值;

的值.

查看答案和解析>>

同步練習(xí)冊答案