【題目】圖1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機側(cè)立面夾角∠PCA=∠BDQ=30°.當雙翼收起時,可以通過閘機的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
科目:初中數(shù)學 來源: 題型:
【題目】(2011山東濟南,22,3分)如圖1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延長CB至點D,使BD=AB.
①求∠D的度數(shù);
②求tan75°的值.
(2)如圖2,點M的坐標為(2,0),直線MN與y軸的正半軸交于點N,∠OMN=75°.求直線MN的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,正三角形和正方形內(nèi)接于同一個圓;如圖②,正方形和正五邊形內(nèi)接于同一個圓;如圖③,正五邊形和正六邊形內(nèi)接于同一個圓;…;則對于圖①來說,BD可以看作是正_____邊形的邊長;若正n邊形和正(n+1)邊形內(nèi)接于同一個圓,連接與公共頂點相鄰同側(cè)兩個不同正多邊形的頂點可以看做是_____邊形的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,圖象經(jīng)過B(﹣3,0)、C(0,3)兩點,且與x軸交于點A.
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的表達式;
(2)在拋物線的對稱軸上找一點M,使△ACM周長最短,求出點M的坐標;
(3)若點P為拋物線對稱軸上的一個動點,直接寫出使△BPC為直角三角形時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A為圓心、AB為半徑畫圓,與邊BC交于另一點D.
(1)求BD的長;
(2)連接AD,求∠DAC的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:Rt△ABC中,∠ACB=90°,點E為AB上一點,AC=AE=3,BC=4,過點A作AB的垂線交射線EC于點D,延長BC交AD于點F.
(1)求CF的長;
(2)求∠D的正切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D在邊BC上,∠CAD=∠B,點E在邊AB上,聯(lián)結(jié)CE交AD于點H,點F在CE上,且滿足CFCE=CDBC.
(1)求證:△ACF∽△ECA;
(2)當CE平分∠ACB時,求證:=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD,動點E在AC上,AF⊥AC,垂足為A,AF=AE.
(1)BF和DE有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論;
(2)在其他條件都保持不變的是情況下,當點E運動到AC中點時,四邊形AFBE是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】深圳市民中心廣場上有旗桿如圖①所示,某學校興趣小組測量了該旗桿的高度,如圖②,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為16米,落在斜坡上的影長CD為8米,AB⊥BC;同一時刻,太陽光線與水平面的夾角為45°.1米的標桿EF豎立在斜坡上的影長FG為2米,求旗桿的高度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com