精英家教網(wǎng)將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長(zhǎng)都是8,寬都是2.那么菱形ABCD的周長(zhǎng)是否存在最大值或最小值?如果存在,請(qǐng)求出來(lái);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.
分析:(1)由AD∥BC,DC∥AB,可得四邊形ABCD是平行四邊形.然后分別過(guò)點(diǎn)A、D作AE⊥BC于E,DF⊥AB于F.又由兩張矩形紙片的寬度相等,即可得AE=DF,又由面積問(wèn)題,可得BC=AB,即可得四邊形ABCD為菱形;
(2)由題意可判斷,當(dāng)∠DAB=90°時(shí),菱形ABCD為正方形,周長(zhǎng)最小值為8.當(dāng)AC為矩形紙片的對(duì)角線時(shí),周長(zhǎng)最大值為17.
解答:精英家教網(wǎng)(1)證明:如圖,∵AD∥BC,DC∥AB,
∴四邊形ABCD是平行四邊形.
分別過(guò)點(diǎn)A、D作AE⊥BC于E,DF⊥AB于F.
∵兩張矩形紙片的寬度相等,
∴AE=DF,
又∵AE•BC=DF•AB=S?ABCD,
∴BC=AB,
∴?ABCD是菱形;
精英家教網(wǎng)
(2)解:存在最小值和最大值.(7分)
①當(dāng)∠DAB=90°時(shí),菱形ABCD為正方形,周長(zhǎng)最小值為8;(8分)
②當(dāng)AC為矩形紙片的對(duì)角線時(shí),設(shè)AB=x.如圖,
在Rt△BCG中,BC2=CG2+BG2,
即x2=(8-x)2+22,x=
17
4

∴周長(zhǎng)最大值為
17
4
×4=17.(9分)
點(diǎn)評(píng):本題考查了菱形的判定,及運(yùn)用矩形,菱形的性質(zhì)進(jìn)行綜合運(yùn)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

11、將兩張寬度相等的矩形疊放在一起得到如圖所示的四邊形ABCD,則四邊形ABCD是
形,若兩張矩形紙片的長(zhǎng)都是10,寬都是4,那么四邊形ABCD周長(zhǎng)的最大值=
23.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇中考真題 題型:解答題

將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD。
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長(zhǎng)都是8,寬都是2.那么菱形ABCD的周長(zhǎng)是否存在最大值或最小值?如果存在,請(qǐng)求出來(lái);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年蘇科版九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長(zhǎng)都是8,寬都是2.那么菱形ABCD的周長(zhǎng)是否存在最大值或最小值?如果存在,請(qǐng)求出來(lái);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年遼寧省中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

將兩張寬度相等的矩形紙片疊放在一起得到如圖所示的四邊形ABCD.
(1)求證:四邊形ABCD是菱形;
(2)如果兩張矩形紙片的長(zhǎng)都是8,寬都是2.那么菱形ABCD的周長(zhǎng)是否存在最大值或最小值?如果存在,請(qǐng)求出來(lái);如果不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案