【題目】如圖,三角形紙片ABC中,ABAC,∠BAC120°,BC14cm,折疊紙片,使點C和點A重合,折痕與AC,BC交于點D和點E;則折痕DE的長為_____

【答案】cm

【解析】

由題意可得∠B=C=30°,由折疊可得AE=EC,∠EAC=C=30°,∠ADE=EDC=90°,則∠BAE=90°,根據(jù)30度所對的直角邊等于斜邊的一半,可得BE=2AE,
即可求EC的長度,再根據(jù)30度所對的直角邊等于斜邊的一半,可求DE的長度.

解:∵ABAC,∠BAC120°,

∴∠B=∠C30°,

∵折疊,

∴∠EAC=∠C30°,∠ADE=∠CDE90°,AEEC,

∵∠BAE=∠BAC﹣∠EAC,

∴∠BAE90°,且∠B30°,

BE2AE,

BCEC+BE14

EC

∵∠C30°,∠EDC90°

CE2DE

DE

故答案為cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCBC邊上的垂直平分線DEBAC得平分線交于點E,EFABAB的延長線于點F,EGAC交于點G

求證:(1BF=CG;(2AF=AB+AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,ABC的三個頂點都在坐標(biāo)軸上,A,B兩點關(guān)于y軸對稱,點Cy軸正半軸上一個動點,AD是角平分線.

1)如圖1,若∠ACB90°,直接寫出線段ABCD,AC之間數(shù)量關(guān)系;

2)如圖2,若ABAC+BD,求∠ACB的度數(shù);

3)如圖2,若∠ACB100°,求證:ABAD+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校運動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.

(1)求A、B兩種獎品的單價各是多少元?

(2)學(xué)校計劃購買A、B兩種獎品共100件,且A種獎品的數(shù)量不大于B種獎品數(shù)量的3倍,設(shè)購買A種獎品m件,購買費用為W元,寫出W(元)與m(件)之間的函數(shù)關(guān)系式.請您確定當(dāng)購買A種獎品多少件時,費用W的值最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A12),B4,1),C2,﹣2).

1)請寫出△ABC關(guān)于x軸對稱的點A1,B1,C1的坐標(biāo);

2)請在坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A2B2C2

3)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2+bx+c的圖像與x 軸交于A、B兩點,與y軸交于點C,OB=OC.點D在函數(shù)圖像上,CD//x軸,且CD=2,直線l 是拋物線的對稱軸,E是拋物線的頂點.

(1)求b、c 的值;

(2)如圖,連接BE,線段OC 上的點F 關(guān)于直線l 的對稱點F 恰好在線段BE上,求點F的坐標(biāo);

(3)如圖,動點P在線段OB上,過點P x 軸的垂線分別與BC交于點M,與拋物線交于點N.試問:拋物線上是否存在點Q,使得△PQN△APM的面積相等,且線段NQ的長度最?如果存在,求出點Q的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在平面直角坐標(biāo)系中,已知ABC的三個頂點的坐標(biāo)分別為A(-3,5),B(-2,1),C(-13).

①畫出ABC關(guān)于x軸的對稱圖形A1B1C1;

②畫出A1B1C1沿x軸向右平移4個單位長度后得到的A2B2C2

③如果AC上有一點Ma,b)經(jīng)過上述兩次變換,那么對應(yīng)A2C2上的點M2的坐標(biāo)是

2)請在圖2用無刻度的直尺在圖中以AB為一邊畫一個面積為18的長方形ABMN.(不要求寫畫法,但要保留畫圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABEADCABC分別是關(guān)于AB,AC邊所在直線的軸對稱圖形,若∠1:∠2:∠3=721,則∠α的度數(shù)為(  。

A.126°B.110°C.108°D.90°

查看答案和解析>>

同步練習(xí)冊答案