【題目】函數(shù)y=x2+bx+c的圖像與x 軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,OB=OC.點(diǎn)D在函數(shù)圖像上,CD//x軸,且CD=2,直線l 是拋物線的對(duì)稱軸,E是拋物線的頂點(diǎn).
(1)求b、c 的值;
(2)如圖①,連接BE,線段OC 上的點(diǎn)F 關(guān)于直線l 的對(duì)稱點(diǎn)F′ 恰好在線段BE上,求點(diǎn)F的坐標(biāo);
(3)如圖②,動(dòng)點(diǎn)P在線段OB上,過(guò)點(diǎn)P 作x 軸的垂線分別與BC交于點(diǎn)M,與拋物線交于點(diǎn)N.試問(wèn):拋物線上是否存在點(diǎn)Q,使得△PQN與△APM的面積相等,且線段NQ的長(zhǎng)度最?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,說(shuō)明理由.
圖 ① 圖②
【答案】(1)c=-3;(2)點(diǎn)F的坐標(biāo)為(0,-2);(3)滿足題意的點(diǎn)Q的坐標(biāo)為(,)和(,)
【解析】
(1)由條件可求得拋物線對(duì)稱軸,則可求得b的值;由OB=OC,可用c表示出B點(diǎn)坐標(biāo),代入拋物線解析式可求得c的值;
(2)可設(shè)F(0,m),則可表示出F′的坐標(biāo),由B、E的坐標(biāo)可求得直線BE的解析式,把F′坐標(biāo)代入直線BE解析式可得到關(guān)于m的方程,可求得F點(diǎn)的坐標(biāo);
(3)設(shè)點(diǎn)P坐標(biāo)為(n,0),可表示出PA、PB、PN的長(zhǎng),作QR⊥PN,垂足為R,則可求得QR的長(zhǎng),用n可表示出Q、R、N的坐標(biāo).在Rt△QRN中,由勾股定理可得到關(guān)于n的二次函數(shù),利用二次函數(shù)的性質(zhì)可知其取得最小值時(shí)n的值,則可求得Q點(diǎn)的坐標(biāo).
(1)∵CD∥x軸,CD=2,∴拋物線對(duì)稱軸為x=1,∴.
∵OB=OC,C(0,c),∴B點(diǎn)的坐標(biāo)為(﹣c,0),∴0=c2+2c+c,解得:c=﹣3或c=0(舍去),∴c=﹣3;
(2)設(shè)點(diǎn)F的坐標(biāo)為(0,m).
∵對(duì)稱軸為直線x=1,∴點(diǎn)F關(guān)于直線l的對(duì)稱點(diǎn)F的坐標(biāo)為(2,m).
由(1)可知拋物線解析式為y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4).
∵直線BE經(jīng)過(guò)點(diǎn)B(3,0),E(1,﹣4),∴利用待定系數(shù)法可得直線BE的表達(dá)式為y=2x﹣6.
∵點(diǎn)F在BE上,∴m=2×2﹣6=﹣2,即點(diǎn)F的坐標(biāo)為(0,﹣2);
(3)存在點(diǎn)Q滿足題意.
設(shè)點(diǎn)P坐標(biāo)為(n,0),則PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.
作QR⊥PN,垂足為R.
∵S△PQN=S△APM,∴,∴QR=1.
分兩種情況討論:
①點(diǎn)Q在直線PN的左側(cè)時(shí),Q點(diǎn)的坐標(biāo)為(n﹣1,n2﹣4n),R點(diǎn)的坐標(biāo)為(n,n2﹣4n),N點(diǎn)的坐標(biāo)為(n,n2﹣2n﹣3),∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴時(shí),NQ取最小值1.此時(shí)Q點(diǎn)的坐標(biāo)為;
②點(diǎn)Q在直線PN的右側(cè)時(shí),Q點(diǎn)的坐標(biāo)為(n+1,n2﹣4).
同理,NQ2=1+(2n﹣1)2,∴時(shí),NQ取最小值1.此時(shí)Q點(diǎn)的坐標(biāo)為.
綜上可知存在滿足題意的點(diǎn)Q,其坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀:對(duì)于兩個(gè)不等的非零實(shí)數(shù)、,若分式的值為零,則或.又因?yàn)?/span>,所以關(guān)于的方程有兩個(gè)解,分別為,.
應(yīng)用上面的結(jié)論解答下列問(wèn)題:
(1)方程的兩個(gè)解分別為,,則_________,_________;
(2)方程的兩個(gè)解分別為,,求的值;
(3)關(guān)于的方程的兩個(gè)解分別為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)癮低齡化問(wèn)題已經(jīng)引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國(guó)范圍內(nèi)對(duì)12﹣35歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中的信息,回答下列問(wèn)題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是 ;
(4)據(jù)報(bào)道,目前我國(guó)12﹣35歲網(wǎng)癮人數(shù)約為2000萬(wàn),請(qǐng)估計(jì)其中12﹣23歲的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三角形紙片ABC中,AB=AC,∠BAC=120°,BC=14cm,折疊紙片,使點(diǎn)C和點(diǎn)A重合,折痕與AC,BC交于點(diǎn)D和點(diǎn)E;則折痕DE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.現(xiàn)以這組數(shù)中的各個(gè)數(shù)作為正方形的邊長(zhǎng)值構(gòu)造正方形,再分別依次從左到右取2個(gè)、3個(gè)、4個(gè)、5個(gè)…正方形拼成如上長(zhǎng)方形,若按此規(guī)律繼續(xù)作長(zhǎng)方形,則序號(hào)為⑦的長(zhǎng)方形周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】青島某高中允許高三學(xué)生從寄宿、走讀兩種方式中選擇一種就讀,今年新高三學(xué)生總?cè)藬?shù)與去年相比增加了6%,其中選擇寄宿的學(xué)生增加了20%,選擇走讀的學(xué)生減少了15%,若去年高三學(xué)生的總數(shù)為500人,求今年新高三學(xué)生選擇寄宿和走讀的人數(shù)分別是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,初、高中部根據(jù)初賽成績(jī)各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計(jì)算出a、b、c的值;
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?
(3)計(jì)算初中代表隊(duì)決賽成績(jī)的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某校為了解九年級(jí)男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行了1000米跑測(cè)試.按照成績(jī)分為優(yōu)秀、良好、合格與不合格四個(gè)等級(jí).學(xué)校繪制了如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)給出的信息,補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)該校九年級(jí)有600名男生,請(qǐng)估計(jì)成績(jī)未達(dá)到良好有多少名?
(3)某班甲、乙兩位成績(jī)優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動(dòng)會(huì)1000米比賽,預(yù)賽分為A、B、C三組進(jìn)行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)開展征文活動(dòng),征文主題只能從“愛(ài)國(guó)”“敬業(yè)”“誠(chéng)信”“友善”四個(gè)主題選擇一個(gè),九年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求共抽取了多少名學(xué)生的征文;
(2)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,選擇“愛(ài)國(guó)”主題所對(duì)應(yīng)的圓心角是多少;
(4)如果該校九年級(jí)共有1200名學(xué)生,請(qǐng)估計(jì)選擇以“友善”為主題的九年級(jí)學(xué)生有多少名.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com