【題目】1的長方形ABCD中,E點在AD上,且BE=2AE.今分別以BE、CE為折線,將A、DBC的方向折過去,圖2為對折后A、B、C、D、E五點均在同一平面上的位置圖.若圖2中,∠AED=15°,則∠BCE的度數(shù)為何?( 。

A. 30 B. 32.5 C. 35 D. 37.5

【答案】D

【解析】

根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得△ABE、△A′BE皆為30°、60°、90° 的三角形,所以∠AEB=60°,再根據(jù)平角等于180°求出∠AED′=60°,即可求得∠DED′=75°,然后根據(jù)翻折變換的性質(zhì)求出∠2=37.5°,再根據(jù)兩直線平行,內(nèi)錯角相等解答.

如圖,

根據(jù)題意得:∵BE=2AE=2A′E,∠A=∠A′=90°,

∴△ABE、△A′BE皆為30°、60°、90° 的三角形,

∴∠1=∠AEB=60°,

∴∠AED′=180°﹣∠1﹣∠AEB=180°﹣60°﹣60°=60°,

∴∠DED′=∠AED+∠AED′=15°+60°=75°,

∴∠2=∠DED′=37.5°,

∵A′D′∥BC,

∴∠BCE=∠2=37.5°.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是定長線段上一定點,點在線段上,點在線段上,點、點分別從點、點出發(fā)以、的速度沿直線向左運動,運動方向如箭頭所示

1)若,當點C、D運動了2s,求的值;

2)若點、運動時,總有,直接填空:______;

3)在(2)的條件下,是直線上一點,且,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在下列條件中,不能作為判斷ABD≌△BAC的條件是( )

A. D=C,BAD=ABC B. BAD=ABC,ABD=BAC

C. BD=AC,BAD=ABC D. AD=BC,BD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】火車勻速通過隧道時,火車在隧道內(nèi)的長度(米)與火車行駛時間(秒)之間的關(guān)系用圖象描述如圖所示,有下列結(jié)論:

火車的長度為120米;

火車的速度為30/秒;

火車整體都在隧道內(nèi)的時間為25秒;

隧道長度為750米.

其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的⊙O經(jīng)過點D,E是⊙O上一點,且∠AED=45

(1)試判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;

(2)若⊙O的半徑為3,sin∠ADE=,求AE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)快、慢兩車分別從相距480千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時,然后以原速繼續(xù)向甲地行駛,到達甲地后停止行駛;快車到達乙地后,立即按原路原速返回甲地(快車掉頭的時間忽略不計),快、慢兩車距乙地的路程(千米)與所用時間(小時)之間的函數(shù)圖象如圖,請結(jié)合圖象信息解答下列問題:

(1)求慢車的行駛速度和的值;

(2)求快車與慢車第一次相遇時,距離甲地的路程是多少千米?

(3)求兩車出發(fā)后幾小時相距的路程為千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形兩頂點為,,點D的坐標為,在上取點E,使得,連接,分別交,MN兩點.

1)求證:;

2)求點E的坐標和線段所在直線的解析式;

3)在M,N兩點中任選一點求出它的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCDAB6,AD8,將矩形ABCD繞點A順時針旋轉(zhuǎn)θθ360°)得到矩形AEFG,當θ_____°時,GCGB

查看答案和解析>>

同步練習冊答案