【題目】如圖,點的坐標為,動點從點出發(fā),沿軸以每秒個單位的速度向上移動,且過點的直線也隨之移動,如果點關(guān)于的對稱點落在坐標軸上,沒點的移動時間為,那么的值可以是___.

【答案】23(答一個即可)

【解析】

找出點M關(guān)于直線l在坐標軸上的對稱點E、F,如圖所示.求出點E、F的坐標,然后分別求出ME、MF中點坐標,最后分別求出時間t的值.

如圖,過點MMF⊥直線l,交y軸于點F,交x軸于點E,則點E.F為點M在坐標軸上的對稱點.
過點MMDx軸于點D,OD=3,MD=2.
由直線l:y=x+b可知∠PDO=OPD=45°,
∴∠MED=OEF=45°,則MDEOEF均為等腰直角三角形,
DE=MD=2OE=OF=1,
E(1,0),F(0,1).
M(3,2),F(0,1)
∴線段MF中點坐標為(,).
直線y=x+b過點(,),=+b,解得:b=2,
t=2.
M(3,2),E(1,0),
∴線段ME中點坐標為(2,1).
直線y=x+b過點(2,1),則1=2+b,解得:b=3,
t=3.
故點M關(guān)于l的對稱點,當(dāng)t=2時,落在y軸上,當(dāng)t=3時,落在x軸上,

故答案為23.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間設(shè)他從山腳出發(fā)后所用的時間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示下列說法錯誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在證明勾股定理時,可以將4個全等的直角三角形和一個小正方形拼成的一個大正方形(如圖所示).如果小正方形的面積是25,大正方形的面積為49,直角三角形中較小的銳角為α,那么tanα的值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點邊上,的延長線交于點,下列結(jié)論錯誤的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+3與y軸的交點為A,點A與點B關(guān)于拋物線的對稱軸對稱,二次函數(shù)y=ax2+bx+3的y與x的部分對應(yīng)值如下表:

x

﹣1

0

1

3

4

y

8

0

0

1拋物線的對稱軸是 _________ .點A ______ ____,B _____, _____;

2求二次函數(shù)y=ax2+bx+3的解析式;

3已知點Mm,n在拋物線y=ax2+bx+3上,設(shè)△BAM的面積為S,求S與m的函數(shù)關(guān)系式、畫出函數(shù)圖象.并利用函數(shù)圖象說明S是否存在最大值,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機抽測了200名學(xué)生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個小長方形的高依次為0.02、0.03、0.040.05,由此可估計全區(qū)初中畢業(yè)生的體重不小于60千克的學(xué)生人數(shù)約為___人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線交于點,順次聯(lián)結(jié)ABCD各邊中點得到的一個新的四邊形,如果添加下列四個條件中的一個條件:①;②;③;④,可以使這個新的四邊形成為矩形,那么這樣的條件個數(shù)是()

A. 1個;B. 2個;

C. 3個;D. 4個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將正方形折疊,使頂點邊上的一點重合(不與端點重合),折痕交于點,交于點,邊折疊后與邊交于點,連接,連接.

1)若,,求的長;

2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=-x-3與拋物線y=x2+mx+n相交于AB兩個不同的點,其中點Ax軸上.
1n=3m-9(用含m的代數(shù)式表示);
2)若點B為該拋物線的頂點,求m、n的值;
3)①設(shè)m=-2,當(dāng)-3≤x≤0時,求二次函數(shù)y=x2+mx+n的最小值;
②若-3≤x≤0時,二次函數(shù)y=x2+mx+n的最小值為-4,求m的值.

查看答案和解析>>

同步練習(xí)冊答案