【題目】概念學習

規(guī)定:如果一個三角形的三個角分別等于另一個三角形的三個角,那么稱這兩個三角形互為等角三角形

從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原來三角形是等角三角形,我們把這條線段叫做這個三角形的等角分割線

理解概念

1)如圖1,在RtABC中,∠ACB90°CDAB,請寫出圖中兩對等角三角形

概念應用

2)如圖2,在ABC中,CD為角平分線,∠A40°,∠B60°.求證:CDABC的等角分割線.

3)在ABC中,∠A42°,CDABC的等角分割線,直接寫出∠ACB的度數(shù).

【答案】1ABCACD,ABCBCD,ACDBCD等角三角形;(2)見解析;(3)∠ACB的度數(shù)為111°84°106°92°

【解析】

1)根據(jù)題中給出的等角三角形的定義即可解答;
2)通過三角形內(nèi)角和定理求出∠ACB80°,然后再由角平分線的定義可得到∠ACD=DCB=ACB=40°,最后通過等角分割線的定義進行證明;
3)需分情況討論,當△ACD是等腰三角形時DA=DCDA=AC,當△BCD是等腰三角形時DB=BCDC=BD,然后根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和定理進行求解.

解:(1)△ABC與△ACD,△ABCBCD,ACDBCD等角三角形;

2)∵在ABC中,∠A40°,∠B60°

∴∠ACB180°﹣∠A﹣∠B80°

CD為角平分線,

∴∠ACD=∠DCBACB40°,

∴∠ACD=∠A,∠DCB=∠A,

CDDA

∵在DBC中,∠DCB40°,∠B60°,

∴∠BDC180°﹣∠DCB﹣∠B80°

∴∠BDC=∠ACB,

CDDA,∠BDC=∠ACB,∠DCB=∠A

B=∠B,

CDABC的等角分割線;

3)當ACD是等腰三角形,DADC時,∠ACD=∠A42°,

∴∠ACB=∠BDC42°+42°84°

ACD是等腰三角形,DAAC時,∠ACD=∠ADC69°,

BCD=∠A42°

∴∠ACB69°+42°111°,

BCD是等腰三角形,DCBD時,∠ACD=∠BCD=∠B46°,

∴∠ACB92°,

當△BCD是等腰三角形,DBBC時,∠BDC=∠BCD,

設∠BDC=∠BCDx

則∠B180°2x,

則∠ACD=∠B180°2x

由題意得,180°2x+42°x

解得,x74°,

∴∠ACD180°2x32°

∴∠ACB106°,

∴∠ACB的度數(shù)為111°84°106°92°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AMBN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D

1)求∠CBD的度數(shù);

2)當點P運動時,∠APB與∠ADB之間的數(shù)量關系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規(guī)律.

3)當點P運動到使ACB=∠ABD時,直接寫出ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九年級開展社會主義核心價值觀演講比賽活動,九(1)班、九(2)班根據(jù)初賽成績各選出5名選手參加復賽,兩個班各選出5名選手的復賽成績(滿分100分)如圖所示.

根據(jù)圖中數(shù)據(jù)解決下列問題:

1)九(1)班復賽成績的眾數(shù)是 分,九(2)班復賽成績的中位數(shù)是 分;

2)請你求出九(1)班和九(2)班復賽的平均成績和方差,并說明哪個班的成績更穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行1500米比賽,在比賽時,兩人所跑的路程y()與所用的時間x()間的函數(shù)關系如圖所示,解答下列問題:

(1)求甲的速度等于多少米/分;

(2)當乙到終點時,甲距離終點有多遠;

(3)乙在距終點多遠處追上了甲.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是梯形,ADBC,ACBD,且ACBD,如果梯形ABCD的中位線長是5,那么這個梯形的高AH___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)計算:(﹣2)1﹣|﹣|+(﹣1)0+cos45°.

(2)已知m2﹣5m﹣14=0,求(m﹣1)(2m﹣1)﹣(m+1)2+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).

1)數(shù)軸上點B對應的數(shù)是   ,點B到點A的距離是   ;

2)經(jīng)過幾秒,原點O是線段MN的中點?

3)經(jīng)過幾秒,點M,N分別到點B的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為預防傳染病,某校定期對教室進行藥熏消毒.已知藥物燃燒階段,室內(nèi)每立方米空氣中的含藥量 與藥物在空氣中的持續(xù)時間成正比例;燃燒后,成反比例(如圖所示).現(xiàn)測得藥物分鐘燃完,此時教室內(nèi)每立方米空氣含藥量為.根據(jù)以上信息解答下列問題:

1)分別求出藥物燃燒時及燃燒后 關于的函數(shù)表達式.

2)當每立方米空氣中的含藥量低于 時,對人體方能無毒害作用,那么從消毒開始,在哪個時段消毒人員不能停留在教室里?

3)當室內(nèi)空氣中的含藥量每立方米不低于 的持續(xù)時間超過分鐘,才能有效殺滅某種傳染病毒.試判斷此次消毒是否有效,并說明理由.

查看答案和解析>>

同步練習冊答案