【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交AB于M,交AC于N.
(1)若∠ABC=70°,求∠MNA的度數(shù).
(2)連接NB,若AB=8cm,△NBC的周長是14cm.求BC的長;
【答案】(1)50°;(2)6 cm.
【解析】試題分析:
(1)由AB=AC可得∠C=∠ABC=70°,從而可得∠A=40°;由MN垂直平分AB可得AN=BN,可得∠ABN=∠A=40°,從而可得∠ANB=100°,再由等腰三角形的三線合一可得∠MNA=∠ANB=50°;
(2)由(1)可知BN=AN,由此可得BN+NC=AN+NC=AC=AB=8cm,再由C△BNC=BN+CN+BC=14cm,可得BC=14-8=6(cm).
試題解析:
(1)∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=40°,
∵M(jìn)N是AB的垂直平分線,
∴AN=BN,
∴∠ABN=∠A=40°,
∴∠ANB=100°,
∴∠MNA=50°.
(2)由(1)可知:AN=BN,
∴BN+CN=AN+CN=AC,
∵AB=AC=8cm,
∴BN+CN=8cm,
∵C△BNC=BN+CN+BC=14(cm),
∴BC=14﹣8=6(cm).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一次函數(shù)y=2x+m的圖像與x軸相交于點(diǎn)A(-3,0),則m的值為( 。
A.-3B.6C.-6D.6或-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是BE上一點(diǎn),D是AC的中點(diǎn),且AB=AC,DE=DB,∠A=60°,△ABC的周長是18cm。求∠E的度數(shù)及CE的長度。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把邊長分別為4和6的矩形ABCO如圖放在平面直角坐標(biāo)系中,將它繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a角,旋轉(zhuǎn)后的矩形記為矩形EDCF.在旋轉(zhuǎn)過程中,
(1)如圖①,當(dāng)點(diǎn)E在射線CB上時(shí),E點(diǎn)坐標(biāo)為 ;
(2)當(dāng)△CBD是等邊三角形時(shí),旋轉(zhuǎn)角a的度數(shù)是 (a為銳角時(shí));
(3)如圖②,設(shè)EF與BC交于點(diǎn)G,當(dāng)EG=CG時(shí),求點(diǎn)G的坐標(biāo);
(4)如圖③,當(dāng)旋轉(zhuǎn)角a=90°時(shí),請(qǐng)判斷矩形EDCF的對(duì)稱中心H是否在以C為頂點(diǎn),且經(jīng)過點(diǎn)A的拋物線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(0,1),B(2,0),C(4,3).
(1)求ΔABC的面積;
(2)設(shè)點(diǎn)P在坐標(biāo)軸上,且ΔABP與ΔABC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)-2,-1,0,。,。, 20,。常担敲催@組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( 。
A. 6和6 B. 3和6 C. 6和0 D. 9.5和6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com