【題目】如圖,已知⊙O是△ABC的外接圓,連接OC,過點AADOC,交BC的延長線于D,ABOCE,∠ABC45°

(1)求證:AD是⊙O的切線;

(2)AE,CE3

①求⊙O的半徑;

②求圖中陰影部分的面積.

【答案】(1)證明見解析;(2)OC=4;(3)圖中陰影部分的面積

【解析】

1)連接 ,根據(jù)圓周角定理可知 ,根據(jù)平行線的性質(zhì)即可求出 ,從而可證AD是⊙O的切線

2)①設(shè) ,根據(jù) ,可知 ,在中,根據(jù)勾股定理可知: ,即可求出半徑的長;

②根據(jù)扇形面積公式以及三角形面積公式可求得答案。

解:(1)連接 ,如下圖所示,

,

,

是⊙O的半徑,

是⊙O的切線,

2)①設(shè) ,

,

,

由于 ,

中,根據(jù)勾股定理可知:

,

;

,

,

∴圖中陰影部分的面積

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是圓的直徑,點是圓上一點,與過點的切線垂直,垂足為點,直線的延長線相交于點,平分,交于點,連接

1)求證:平分;

2)求證:是等腰三角形;

3)若,求圓的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是邊AC、BC的中點,FBC延長線上一點,∠F=B

(l)AB=1O,求FD的長;

(2)AC=BC.求證:CDEDFE .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,BC3,cosB,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△AB'CP為線段AB上的動點,以點P為圓心,PA長為半徑作⊙P,當⊙P與△A′B′C的一邊所在的直線相切時,⊙P的半徑為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖RtABC中,∠C90°,AC6cm,BC8cm,點PAC的中點,Q從點A運動到B,點Q運動到點B停止,連接PQ,取PQ的中點O,連接OC,OB

(1)若△ABC∽△APQ,求BQ的長;

(2)在整個運動過程中,點O的運動路徑長_____;

(3)O為圓心,OQ長為半徑作⊙O,當⊙OAB相切時,求△COB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

(1)求此人所在位置點P的鉛直高度.(結(jié)果精確到0.1米)

(2)求此人從所在位置點P走到建筑物底部B點的路程(結(jié)果精確到0.1米)

測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩幢建筑物ABCD,ABBD,CDBDAB=15m,CD=20mABCD之間有一景觀池,小雙在A點測得池中噴泉處E點的俯角為42°,在C點測得E點的俯角為45°,點B、E、D在同一直線上.求兩幢建筑物之間的距離BD.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin42°=0.67cos42°=0.74,tan42°=0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,E、F分別為BCCD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FPAD于點M,交BA的延長線于點Q.連接BM,下列結(jié)論中:AEBFAEBF;AQ;MBF60°.

正確的結(jié)論是_____(填正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù))

(1)該函數(shù)的圖像與軸公共點的個數(shù)是(

A.0 B.1 C.2 D.1或2

(2)求證:不論為何值,該函數(shù)的圖像的頂點都在函數(shù)的圖像上.

(3)當時,求該函數(shù)的圖像的頂點縱坐標的取值范圍.

查看答案和解析>>

同步練習冊答案