【題目】如圖,已知是圓的直徑,點(diǎn)是圓上一點(diǎn),與過點(diǎn)的切線垂直,垂足為點(diǎn),直線的延長(zhǎng)線相交于點(diǎn),平分,交于點(diǎn),連接

1)求證:平分;

2)求證:是等腰三角形;

3)若,求圓的半徑長(zhǎng).

【答案】(1)證明見解析;(2)證明見解析;(3) 的半徑為.

【解析】

1)根據(jù)切線的性質(zhì)得OCDP,而ADDP,則肯定判斷OCAD,根據(jù)平行線的性質(zhì)得∠DAC=OCA,加上∠OAC=OCA,所以∠OAC=DAC,即可求證.
2)根據(jù)圓周角定理由AB為圓O的直徑得∠ACB=90°,則∠BCE=45°,再利用圓周角定理得∠BOE=2BCE=90°,則∠OFE+OEF=90°,易得∠CFP+OEF=90°,再根據(jù)切線的性質(zhì)得到∠OCF+PCF=90°,而∠OCF=OEF,根據(jù)等角的余角相等得到∠PCF=CFP,于是可判斷△PCF是等腰三角形;
3)連結(jié)OE.由AB O的直徑,得到∠ACB=90°,根據(jù)角平分線的定義得到∠BCE=45°,設(shè)圓O的半徑為r,則OF=6-r,根據(jù)勾股定理列方程即可得到結(jié)論.

(1)證明:∵為圓的切線,

,

,

//,

,

,

平分

(2)證明:∵是圓的直徑,

,

平分∠

,

,

,

,

,,

,

是等腰三角形;

(3)連結(jié),

是圓的直徑,

,

平分∠,

,

,即,

設(shè)圓的半徑為,則,

,

,

解得,

當(dāng)時(shí),(符合題意),

當(dāng)時(shí),(不合題意,舍去),

∴圓的半徑為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知O為坐標(biāo)原點(diǎn),AOB=30°,ABO=90°,且點(diǎn)A的坐標(biāo)為(2,0).

(1) 求點(diǎn)B的坐標(biāo);

(2) 若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A、BO三點(diǎn),求此二次函數(shù)的解析式;

(3) (2)中的二次函數(shù)圖象的OB(不包括點(diǎn)O、B)上,是否存在一點(diǎn)C,使得四邊形ABCO的面積最大?若存在,求出這個(gè)最大值及此時(shí)點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,王華同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點(diǎn)P時(shí),發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行12m到達(dá)Q點(diǎn)時(shí),發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部.已知王華同學(xué)的身高是1.6m,兩個(gè)路燈的高度都是9.6m.

(1)求兩個(gè)路燈之間的距離;

(2)當(dāng)王華同學(xué)走到路燈BD處時(shí),他在路燈AC下的影子長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,PCD邊上一點(diǎn)(DP<CP),APB=90°.將ADP沿AP翻折得到AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過點(diǎn)BBNMPDC于點(diǎn)N.

(1)求證:AD2=DPPC;

(2)請(qǐng)判斷四邊形PMBN的形狀,并說明理由;

(3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,P點(diǎn)為半徑OA上異于O點(diǎn)和A點(diǎn)的一個(gè)點(diǎn),過P點(diǎn)作與直徑AB垂直的弦CD,連接AD,作BEAB,OEADBEE點(diǎn),連接AE、DE、AECDF點(diǎn).

(1)求證:DE為⊙O切線;

(2)若⊙O的半徑為3,sinADP=,求AD;

(3)請(qǐng)猜想PFFD的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c滿足a+c=b,4a+c=-2b,拋物線y=ax+bx+ca0)過點(diǎn)A(-,y1),B,y2,C3,y3),則y1,y2,y3的大小關(guān)系為(

A. y2y1y3B. y3y1y2C. y2y3y1D. y1y2y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)CAB為直徑的圓O上,AD與過點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交圓O于點(diǎn)E.

1)求證:AC平分∠DAB

2)連接BE,若BE=6,sinCAD=,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為,點(diǎn),另拋物線經(jīng)過點(diǎn),M為它的頂點(diǎn).

求拋物線的解析式;

的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,連接OC,過點(diǎn)AADOC,交BC的延長(zhǎng)線于D,ABOCE,∠ABC45°

(1)求證:AD是⊙O的切線;

(2)AE,CE3

①求⊙O的半徑;

②求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案