【題目】有一只拉桿式旅行箱如圖1,其側面示意圖如圖2所示,已知箱體長AB=50 cm,拉桿BC的伸長距離最大時可達35 cm,點A、B、C在同一條直線上,在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面切于點D,在拉桿伸長至最大的情況下,當點B到水平地面MN的距離為38 cm時,點C到水平面的距離CE為59 cm.設AF∥MN,AF交CE于點G(精確到1 cm,參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)
(1)求⊙A的半徑長;
(2)當人的手自然下垂拉旅行箱時,人感覺較為舒服,某人將手自然下垂在C端拉旅行箱時,CE為80 cm,∠CAF=64°.求此時拉桿BC的伸長距離.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,點D在邊AB上,點E在線段CD上,且∠ACD=∠B=∠BAE.
(1)求證:;
(2)當點E為CD中點時,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△AOB的位置如圖所示,已知∠AOB=90°,AO=BO,點A的坐標為(-3,1).
(1)求點B的坐標;
(2)求過A、O、B三點的拋物線的解析式;
(3)設點B關于拋物線的對稱軸的對稱點為B1,求△AB1B的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】地鐵10號線某站點出口橫截面平面圖如圖所示,電梯的兩端分別距頂部9.9米和2.4米,在距電梯起點端6米的處,用1.5米的測角儀測得電梯終端處的仰角為14°,求電梯的坡度與長度.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:
①當x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正確的結論是( )
A.①③④ B.①②③ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過A(﹣3,0)、B(1,0)兩點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合).
(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;
(2)如圖1,過點P作PE⊥y軸于點E.求△PAE面積S的最大值;
(3)如圖2,拋物線上是否存在一點Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:已知△ABC,用直尺與圓規(guī),在直線BC上方的平面內作一點M(不與點A重合),使∠BMC=∠BAC(如圖1).
小明利用“同弧所對的圓周角相等”這條性質解決了這個問題,下面是他的作圖過程:
第一步:分別作AB、BC的中垂線(虛線部分),設交點為O;
第二步:以O為圓心,OA為半徑畫圓(即△ABC的外接圓)
第三步:在弦BC上方的弧上(異于A點)取一點M,連結MB、MC,則∠BMC=∠BAC.(如圖2)
思考:如圖2,在矩形ABCD中,BC=6,CD=10,E是CD上一點,DE=2.
(1)請利用小明上面操作所獲得的經(jīng)驗,在矩形ABCD內部用直尺與圓規(guī)作出一點P.點P滿足:∠BPC=∠BEC,且PB=PC.(要求:用直尺與圓規(guī)作出點P,保留作圖痕跡.)
(2)求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚均勻的骰子,骰子停止轉動后,6點朝上是必然事件
B.甲、乙兩人在相同條件下各射擊10次,他們的成績平均數(shù)相同,方差分別是,,則甲的射擊成績較穩(wěn)定
C.“明天降雨的概率為”,表示明天有半天都在降雨
D.了解一批電視機的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點M在CD的邊上,且DM=2,ΔAEM與ΔADM關于AM所在的直線對稱,將ΔADM按順時針方向繞點A旋轉90°得到ΔABF,連接EF,已知線段EF的長為,則正方形ABCD的邊長為_____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com