【題目】已知:如圖,在ABC中,點D在邊AB上,點E在線段CD上,且∠ACD=B=BAE.

1)求證:;

2)當點ECD中點時,求證:.

【答案】(1)證明見解析,(2)證明見解析..

【解析】

(1)欲證明,只要證明AED∽△BAC即可解決問題;

(2)由DAE∽△DCA,推出,由DE=EC,可得,推出,再證明AD2=ADAB即可解決問題;

(1)∵∠ACD=B=BAE,BAC=BAE+CAE,AED=ACD+CAE,

∴∠AED=BAC,

∵∠DAE=B,

∴△AED∽△BAC,

(2)∵∠ADE=CDA,DAE=ACD,

∴△DAE∽△DCA,

,

DE=EC,

,

∵∠DAC=BAC,ACD=B,

∴△ACD∽△ABC,

AC2=ADAB,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時BD=CF,BD⊥CF成立.

(1)當正方形ADEF繞點A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

(2)當正方形ADEF繞點A逆時針旋轉(zhuǎn)45°時,如圖3,延長BD交CF于點G.

①求證:BD⊥CF;

②當AB=4,AD=時,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線與直線交于點O0,0),。點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E。

1)求拋物線的函數(shù)解析式;

2)若點COA的中點,求BC的長;

3)以BC,BE為邊構(gòu)造條形BCDE,設點D的坐標為(m,n),求m,n之間的關系式。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b的圖象與反比例函數(shù)y的圖象交于AB兩點.

1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式.

2)求△AOB的面積.

3)根據(jù)圖象直接寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).

請根據(jù)以上信息回答:

(1)本次參加抽樣調(diào)查的居民有多少人?

(2)將兩幅不完整的圖補充完整;

(3)求扇形統(tǒng)計圖中C所對圓心角的度數(shù);

(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,函數(shù)(x<0,常數(shù)k<0)的圖象經(jīng)過點A(-12),B(m,n)(m<-1),過點By軸的垂線,垂足為C,若△ABC面積為2,求點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖在平面直角坐標系中,已知點A(﹣1,2),B3,4).

1)畫出ABO向上平移2個單位,再向左平移4個單位后所得的圖形A′B′O′;

2)寫出A、BO后的對應點A′、B′、O′的坐標;

3)求兩次平移過程中OB共掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上學習了圓周角的概念和性質(zhì):頂點在圓上,兩邊與圓相交,同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進行了探究.

下面是他的探究過程,請補充完整:

定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個圓外角.

(1)請在圖2中畫出所對的一個圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;

問題解決

經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3,F,H是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為提升硬件設施,決定采購80臺電腦,現(xiàn)有A,B兩種型號的電腦可供選擇.已知每臺A型電腦比B型的貴2000元,2臺A型電腦與3臺B型電腦共需24000元.

(1)分別求A,B兩種型號電腦的單價;

(2)若AB兩種型號電腦的采購總價不高于38萬元,則A型電腦最多采購多少臺?

查看答案和解析>>

同步練習冊答案