【題目】某水果零售商店,通過對市場行情的調(diào)查,了解到兩種水果銷路比較好,一種是冰糖橙,一種是睡美人西瓜.通過兩次訂貨購進(jìn)情況分析發(fā)現(xiàn),買40箱冰糖橙和15箱睡美人西瓜花去2000元,買20箱冰糖橙和30箱睡美人西瓜花去1900元.
(1)請求出購進(jìn)這兩種水果每箱的價格是多少元?
(2)該水果零售商在五一期間共購進(jìn)了這兩種水果200箱,冰糖橙每箱以40元價格出售,西瓜以每箱50元的價格出售,獲得的利潤為w元.設(shè)購進(jìn)的冰糖橙箱數(shù)為a箱,求w關(guān)于a的函數(shù)關(guān)系式;
(3)在條件(2)的銷售情況下,但是每種水果進(jìn)貨箱數(shù)不少于30箱,西瓜的箱數(shù)不少于冰糖橙箱數(shù)的5倍,請你設(shè)計進(jìn)貨方案,并計算出該水果零售商店能獲得的最大利潤是多少?
【答案】(1)每箱冰糖橙進(jìn)價為35元,每箱睡美人西瓜進(jìn)價為40元;(2)w=﹣5a+2000;(3)當(dāng)購買冰糖橙30箱,則購買睡美人西瓜170箱該水果零售商店能獲得的最大利潤,最大利潤為1850元.
【解析】
(1)設(shè)每箱冰糖橙x元,每箱睡美人西瓜y元,根據(jù)“買40箱冰糖橙和15箱睡美人西瓜花去2000元,買20箱冰糖橙和30箱睡美人西瓜花去1900元”列出方程組并解答;
(2)根據(jù)(1)的結(jié)論以及“利潤=售價﹣成本”解答即可;
(3)設(shè)購買冰糖橙a箱,則購買睡美人西瓜為(200﹣a)箱,根據(jù)“每種水果進(jìn)貨箱數(shù)不少于30箱,西瓜的箱數(shù)不少于冰糖橙箱數(shù)的5倍”列出不等式并求得a的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)解答即可.
(1)設(shè)每箱冰糖橙進(jìn)價為x元,每箱睡美人西瓜進(jìn)價為y元,
由題意,得,
解得:,
即設(shè)每箱冰糖橙進(jìn)價為35元,每箱睡美人西瓜進(jìn)價為40元;
(2)根據(jù)題意得,
w=(40﹣35)a+(50﹣40)(200﹣a)=﹣5a+2000;
(3)設(shè)購買冰糖橙a箱,則購買睡美人西瓜為(200﹣a)箱,
則200﹣a≥5a且a≥30,
解得30≤a,
由(2)得w=﹣5a+2000,
∵﹣5,w隨a的增大而減小,
∴當(dāng)a=30時,y最大.
即當(dāng)a=30時,w最大=﹣5×30+2000=1850(元).
答:當(dāng)購買冰糖橙30箱,則購買睡美人西瓜170箱該水果零售商店能獲得的最大利潤,最大利潤為1850元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MON=90°,等邊三角形ABC的一個頂點(diǎn)B是射線ON上的一定點(diǎn),頂點(diǎn)A于點(diǎn)O重合,頂點(diǎn)C在∠MON內(nèi)部
(1)當(dāng)點(diǎn)A在射線OM上移動到A1時,連接A1B,請在∠MON內(nèi)部作出以A1B為一邊的等邊三角形A1BC1(保留作圖痕跡,不寫作法);
(2)設(shè)A1B與OC交于點(diǎn)Q,BC的延長線與A1C1交于點(diǎn)D.求證:△BCQ∽△BA1D;
(3)連接CC1,試猜想∠BCC1為多少度,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8cm,BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),以lcm/s的速度沿A→D→C方向勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)A出發(fā),以2cm/s的速度沿A→B→C方向勻速運(yùn)動,當(dāng)一個點(diǎn)到達(dá)點(diǎn)C時,另一個點(diǎn)也隨之停止.設(shè)運(yùn)動時間為t(s),△APQ的面積為S(cm2),下列能大致反映S與t之間函數(shù)關(guān)系的圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一個如圖所示的標(biāo)有2、3、4、5、6的轉(zhuǎn)盤,另有五張分別標(biāo)有1、2、3、4、5的撲克,小華和小亮用它們做游戲,先由小華轉(zhuǎn)動轉(zhuǎn)盤一次,記下指針停留時所指的數(shù)字;再由小亮隨機(jī)抽取背面朝上的撲克一張,記下正面的數(shù)字.
(1)用列表法或畫樹狀圖的方法,求出記下的兩個數(shù)字之和為8的概率.
(2)若記下的兩個數(shù)字之和為奇數(shù),則小華得1分;若記下的兩個數(shù)字之和為偶數(shù),則小亮得1分.這個游戲?qū)﹄p方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知扇形AOB的圓心角為120°,點(diǎn)C是半徑OA上一點(diǎn),點(diǎn)D是上一點(diǎn).將扇形AOB沿CD對折,使得折疊后的圖形恰好與半徑OB相切于點(diǎn)E.若∠OCD=45°,OC=+1,則扇形AOB的半徑長是( 。
A. 2+B. 2+C. 2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,1輛大貨車與3輛小貨車額定載重量的總和為23噸,2輛大貨車與5輛小貨車額定載重量的總和為41噸. 1輛大貨車、1輛小貨車的額定載重量分別為多少噸?設(shè)1輛大貨車的額定載重量為x噸,1輛小貨車的額定載重量為y噸,依題意,可以列方程組為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(diǎn),點(diǎn)F在邊BC的延長線上,且,連接DE,DF,EF. FH平分交BD于點(diǎn)H.
(1)求證:;
(2)求證::
(3)過點(diǎn)H作于點(diǎn)M,用等式表示線段AB,HM與EF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,在△ABC中,∠ACB=90°,BC=AC,點(diǎn)D在AB上,DE⊥AB交BC于E,點(diǎn)F是AE的中點(diǎn)
(1)寫出線段FD與線段FC的關(guān)系并證明;
(2)如圖2,將△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段FD與線段FC的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將△BDE繞點(diǎn)B逆時針旋轉(zhuǎn)一周,如果BC=4,BE=2,直接寫出線段BF的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境) 已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最?最小值是多少?
(數(shù)學(xué)模型)
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為y=2( )(x>0)
(探索研究)
我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=(x>0)的圖象和性質(zhì).
(1)①填寫下表,畫出函數(shù)的圖象;
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
③在求二次函數(shù)y=ax2+bx+c(a≠0)的最大(。┲禃r,除了通過觀察圖象,還可以通過配方得到.請你通過配方求函數(shù)y=(x>0)的最小值.
解決問題:(2)用上述方法解決“問題情境”中的問題,直接寫出答案。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com