【題目】如圖①,在矩形ABCD中,AB<AD,對角線AC,BD相交于點O,動點P由點A出發(fā),沿AB-BC→CD向點D運動設(shè)點P的運動路程為x,△AOP的面積為y,y與x的函數(shù)關(guān)系圖象如圖②所小示,則AD的長為________.
【答案】4
【解析】
當P點在AB上運動時,△AOP面積逐漸增大,當P點到達B點時,結(jié)合圖象可得△AOP面積最大為3,得到AB與BC的積為12;當P點在BC上運動時,△AOP面積逐漸減小,當P點到達C點時,△AOP面積為0,此時結(jié)合圖象可知P點運動路徑長為7,得到AB與BC的和為7,構(gòu)造關(guān)于AB的一元二方程可求解.
①當點P在AB上運動時,y=AP·×AD
由圖象可知:△AOP面積逐漸增大,當P點到達B點時,△AOP面積最大為3,此時 y=AB×BC= AB·BC=3,即AB·BC=12;
②當P點在BC上運動時,△AOP面積逐漸減小,當P點到達C點時,由圖象可知,此時△AOP面積的為0,P點運動路徑長為7,即AB+BC=7
∴BC=7-AB,代入ABBC=12,得:
AB(7-AB)=12,解得AB=4或3
又∵AB<AD,即AB<BC
∴AB=3,BC=4.
∴AD=4
故答案為:4
科目:初中數(shù)學 來源: 題型:
【題目】心理學家發(fā)現(xiàn):課堂上,學生對概念的接受能力s與提出概念的時間t(單位:min)之間近似滿足函數(shù)關(guān)系s=at2+bt+c(a≠0),s值越大,表示接受能力越強.如圖記錄了學生學習某概念時t與s的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出當學生接受能力最強時,提出概念的時間為( 。
A. 8min B. 13min C. 20min D. 25min
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師提出如下問題:
尺規(guī)作圖:作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.
已知線段a,c如圖.
小蕓的作法如下:
① 取AB=c,作AB的垂直平分線交AB于點O; ② 以點O為圓心,OB長為半徑畫圓;
③ 以點B為圓心,a長為半徑畫弧,與⊙O交于點C;④ 連接BC,AC.
則Rt△ABC即為所求.老師說:“小蕓的作法正確.”
請回答:小蕓的作法中判斷∠ACB是直角的依據(jù)是________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:(3﹣π)0﹣+|3﹣|+(tan30°)﹣1
(2)定義新運算:對于任意實數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法、減法及乘法運算.比如:2⊕5=2×(2﹣5)+1
=2×(﹣3)+1
=﹣6+1
=﹣5
若3⊕x的值小于13,求x的取值范圍,并在如圖所示的數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,點D在邊BC上,點E在線段AD上,EF⊥AC于點F,EG⊥EF交AB于點G,若EF=EG,則CD的長為( )
A.3.6B.4C.4.8D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則cos∠AOD=___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,點為直線上一點,以為邊,點為直角頂點作等腰直角三角形.
(1)如圖①,當點在線段上時,交于點,連接;
①找出一對全等三角形為_____________;
②若四邊形的面積為7,則的長是_______.
(2)如圖②,當點在的延長線上時,交于點,連接.
①的面積記為,的面積記為,探究、之間的數(shù)量關(guān)系并說明理由;
②當的面積為1時,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊BC延長線上一點,連接DE,過頂點B作BF⊥DE,垂足為F,BF交邊DC于點G.
(1)求證:DGBC=DFBG;
(2)連接CF,求∠CFB的大;
(3)作點C關(guān)于直線DE的對稱點H,連接CH,FH.猜想線段DF,BF,CH之間的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.
(1)求拋物線的解析式和直線AC的解析式;
(2)請在y軸上找一點M,使△BDM的周長最小,求出點M的坐標;
(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com